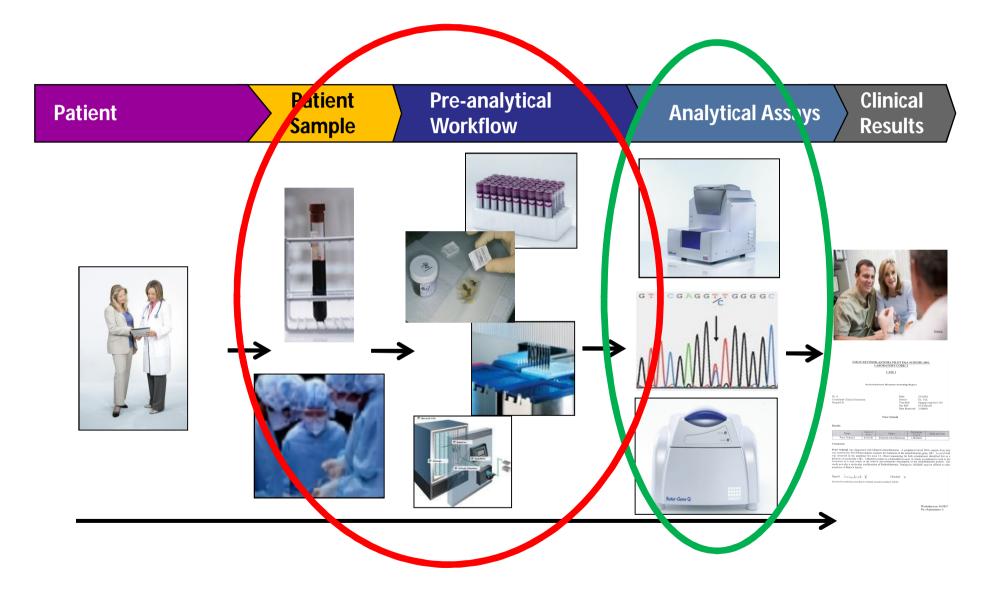


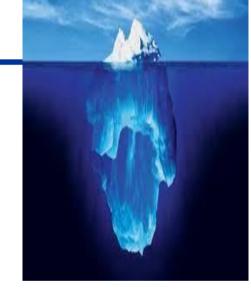
Evidence-based Guidelines for the pre-analytical phase of RNA testing in Blood Samples


> Francesca Malentacchi University of Florence

SEVENTH FRAMEWORK PROGRAMME

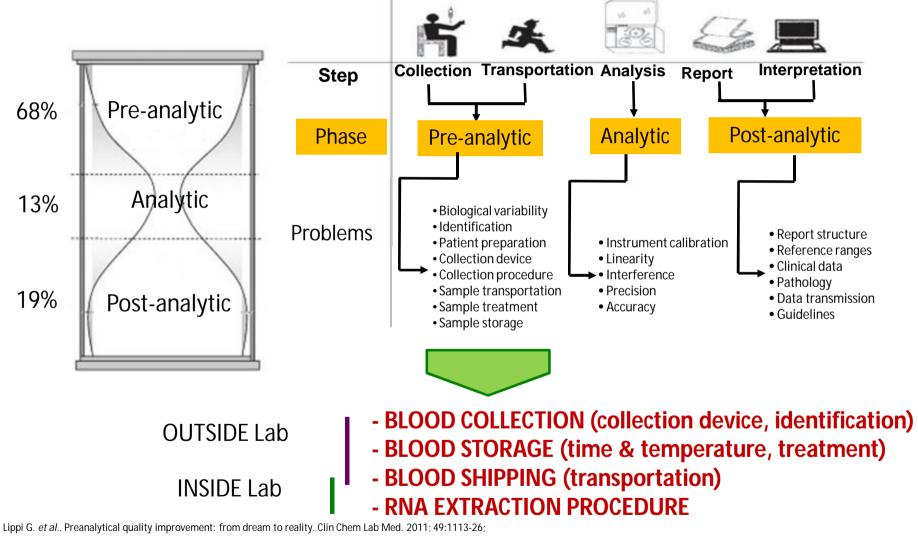
SPIDIA

Pre-analytical phase of blood sample


Analytical - Phase

Pre-analytical Phase no widespread knowledge on the role of

this phase on RNA analysis


Influence in the analytical results

Laboratory workflow

Plebani M. Exploring the iceberg of errors in laboratory medicine. Clin. Chem. Acta. 2009; 404: 16-23;

Lippi G et al. la variabilità preanalitica. RIMeL/IJLaM 2006; 2:24-31

Role of pre-analytical phase

...a Pan-European question...

SPIDIA

(Standardisation and improvement of Pre-analytical procedures for In vitro DIAgnostics)

SPIDIA is a four-year large-scale integrating project that responds to the FP7-HEALTH-2007-B call for proposals in the following topic: **HEALTH-2007-1.2-5** – Standardisation and improvement of pre-analytical procedures for *in vitro* diagnostics. The proposed research and standardisation activities cover all steps from **creation of evidence-based guidelines** (through pan-European quality assurance schemes, EQAs) to creation of tools for the pre-analytical phase to testing and optimisation of these tools through the development of novel assays and biomarkers. All the activities focus on the validation of the translational research providing tools for the pre-analytical phase of *in vitro* diagnostics.

Role of pre-analytical phase

...a Pan-European question...

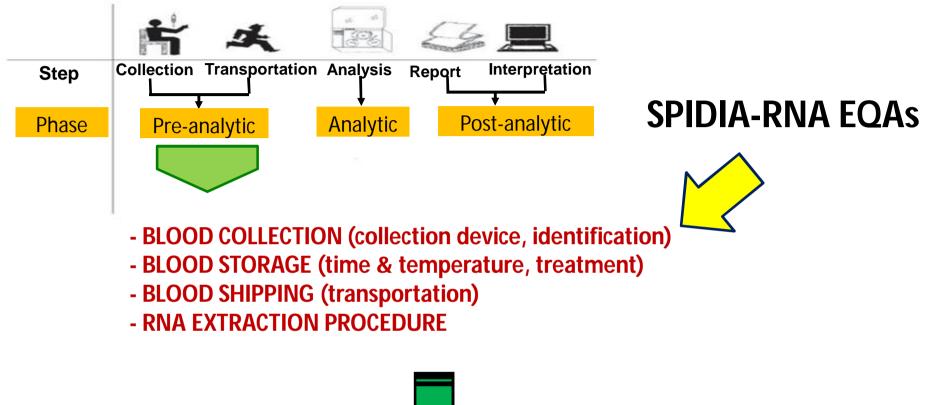
SPIDIA

(Standardisation and improvement of Pre-analytical procedures for In vitro DIAgnostics)

External Quality Assessment (EQA)

.. for the evaluation of pre-analytical phase in blood sample:

- RNA
- Circulating cell free DNA (ccfDNA)
- Genomic DNA (gDNA)



SPIDIA-RNA External Quality Assessments

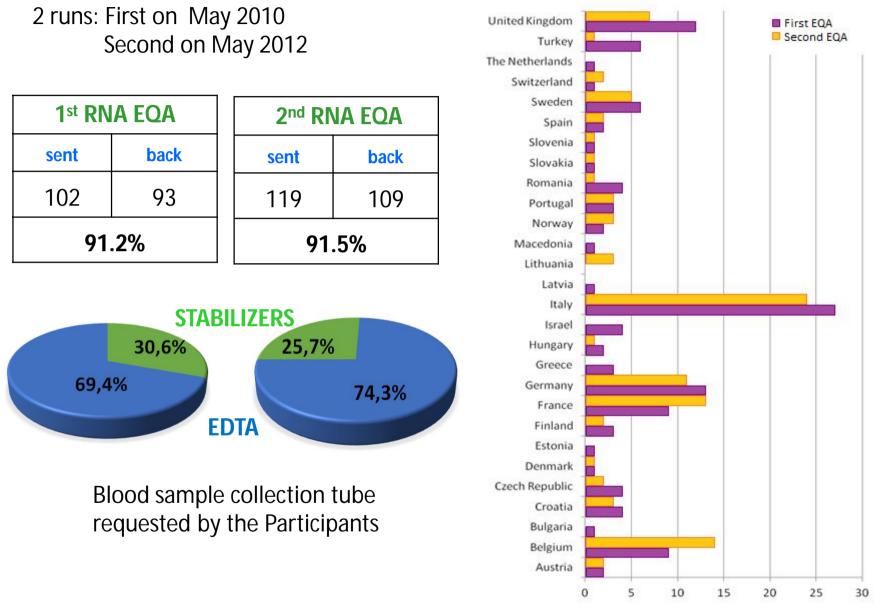
SPIDIA-RNA EQAs: Purposes

BLOOD COLLECTION TUBE

BLOOD STORAGE (time & temperature) between collection and RNA extraction RNA EXTRACTION

SPIDIA-RNA EQAs: Model

1. Active involvement of high number of laboratories performing molecular methods from different European countries with the support of the *European Federation of Clinical Chemistry Laboratory Medicine*; www.efcclm.eu


2. Collection of information about areas of competence, facilities, expertise, accreditation of participating laboratories about 50% were accredited laboratories for molecular diagnostics, within them about 25% were certified ISO15189

3. Programs: implementation of two External Quality Assessment (EQAs) focused on the evaluation of the pre-analytical phase of blood samples used for RNA based analyses

SPIDIA-RNA EQAs: Recruitment

SPIDIA

SPIDIA-RNA: Sample Challenge

1. only *real* blood samples were used to monitor the performance of the preanalytical phase

 appropriate precautions (time intervals, temperature, etc) were adopted for the collection and shipment (due to the well known instability of some transcripts)

3. time-course experiments were implemented at SPIDIA facilities in order to **compare** the quality parameters of the participants (i.e. time zero (t0) of blood collection)

SPIDIA-RNA: EQA scheme

SPIDIA facilities

- Collection and shipping of *real* blood samples
- Shipping of the same blood samples to all participants, following selection of blood collection tube performed by laboratories

PARTICIPANT LABORATORIES

WHAT THEY HAVE DONE:

- They extracted RNA from blood samples
- They measured the concentration of extracted RNA
- They performed the RNA shipping to SPIDIA facility
- They filled the questionnaire
- They filled a «result form» (with details on storage conditions of the challenge blood samples plus details on their own reagents/procedures for RNA extraction)

WHAT THEY HAVE RECEIVED FROM SPIDIA:

- A detailed report of their performance
- Certificate of participation

SEVENTH FRAMEWORI

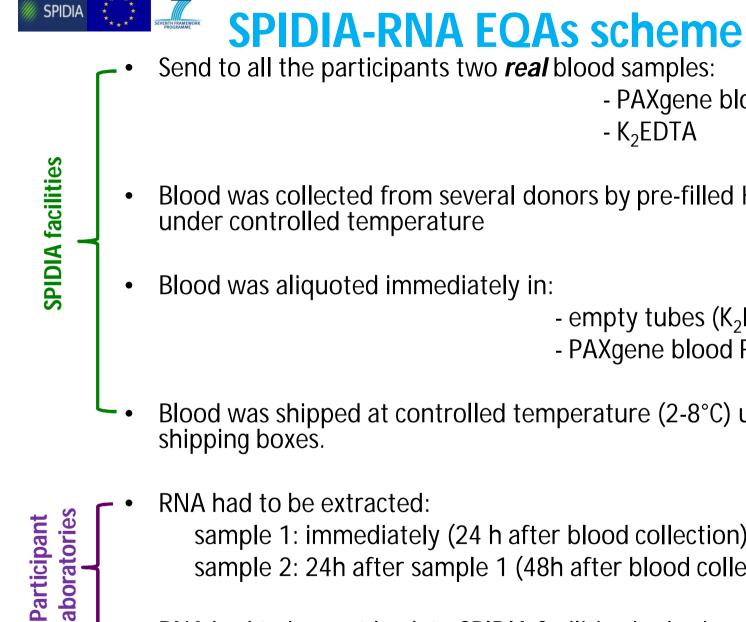
Standardization and Improvement of Generic Pre-analytical Tools and Procedures for In-Vitro Diagnostic

Certificate of Participation

This is to confirm that the Laboratory name laboratory Directed by head of department Responsible Investigator: responsible investigator city, country has participated in the

SPIDIA-RNA Program 2nd RING TRIAL

Dr. Uwe Oelmueller


SPIDIA

Coordinator of the SPIDIA Project

Prof. Mario Pazzagli

Leader of WP 1.2 Evidence-based Quality Guidelines for the pre-analytical phase of Blood Samples

Florence, 30th September 2012

- PAXgene blood RNA tubeTM - K₂EDTA

Blood was collected from several donors by pre-filled K₂EDTA bags under controlled temperature

Blood was aliquoted immediately in:

- empty tubes (K₂EDTA)

- PAXgene blood RNA tubeTM
- Blood was shipped at controlled temperature (2-8°C) using dedicated
- sample 1: immediately (24 h after blood collection) sample 2: 24h after sample 1 (48h after blood collection)

RNA had to be sent back to SPIDIA facilities in dry-ice

- First approach to evaluate the performance of the pre-analytical phase by a specifically designed EQA
- Pan-European panorama (due to the high number of participating laboratories) about reagents and facilities used for the preanalytical phase
- THE RESULTS CAN BE AFFECTED:
 - by post-analytical errors (mistakes performed by the participants filling the "result form")
 - by the heterogeneity of the reagents used by the participants
 - by the technical skills of the personnel involved in the study

SPIDIA check to overcome the "laboratory" post-analytical error

Samples	A. Purity and Quantity of RNA A and RNA B										checking
RNA A	sample	260nm	280n m	320n m	Purity	Quantity (ng/µl blood)	Dilution factor	Extraction vol. (ul)	Elution vol. (ul)	Buffer	 Calculation of Purity and Quality values by using the
	RNA A RNA B	0.051 0.114	0.025	0.001	2.083 2.073	0.600 1.368	1 1	5000 5000	30 30	-	 raw data reported by each Lab
RNA B											 Check of the reported extraction and elution volumes according to the used extraction procedure

- 13 Labs reported discordant results with respect to the recalculated ones for Purity and/or Concentration in at least one sample (possible errors in reporting absorbance values and/or in dilution factors)

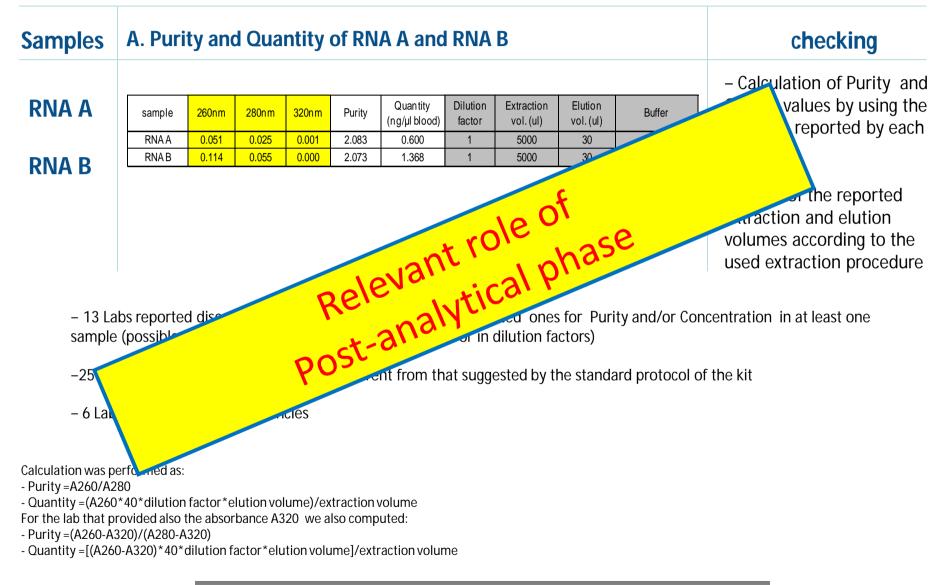
-25 Labs reported an extraction volume different from that suggested by the standard protocol of the kit

- 6 Labs reported both discrepancies

Calculation was performed as:

- Purity = A260/A280

- Quantity =(A260*40*dilution factor*elution volume)/extraction volume
- For the lab that provided also the absorbance A320 we also computed:


- Purity =(A260-A320)/(A280-A320)

- Quantity =[(A260-A320)*40*dilution factor*elution volume]/extraction volume

SPIDIA check to overcome the "laboratory" post-analytical error

SPIDIA-RNA External Quality Assessments: laboratory performance

Samples evaluation at SPIDIA facilities

1. RNA quality parameters

- a. BY KNOWN QUALITY PARAMETERS
- Quantity and Purity
- RNA integrity

b. BY ADDITIONAL QUALITY PARAMETERS

- Presence of qPCR interferences
- Evaluation of expression of selected «variable» genes (the "unstable" ones were developed by SPIDIA WP1.3) (only in the 2nd EQA)
- Presence of DNA contamination in RNA sample (for investigational purpose)

2. Analytical test

c. BY SPECIFIC qPCR TESTINGS TO MIMIC THE ANAYTICAL PHASE

- Evaluation of expression of selected genes

Comparison to time zero (To) value in order to identify critical steps in the pre-analytical phase that can significantly affect the results

RNA QUALITY PARAMETERS

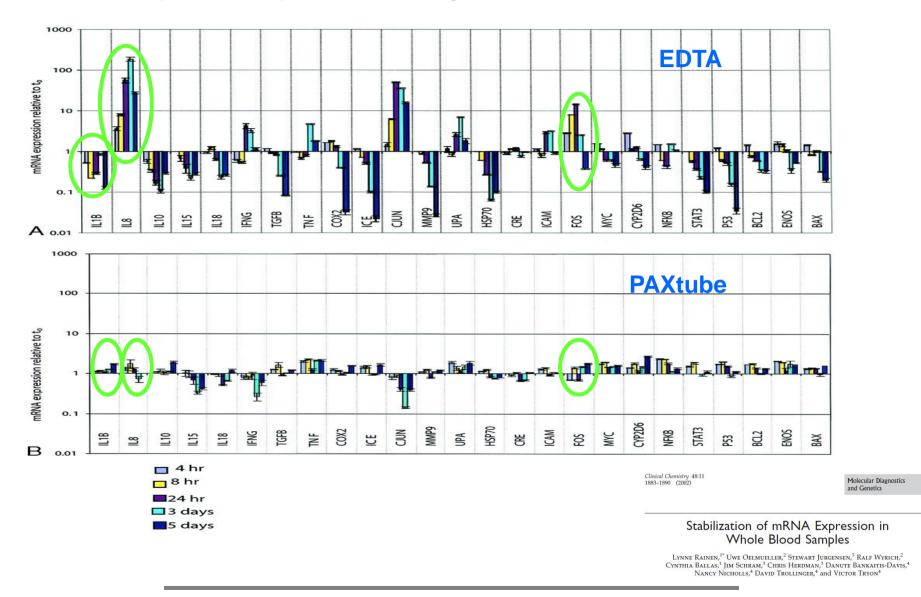
Known parameters

- 1. QUANTITY and PURITY by UV spectrophotometric measurements
- 2. Total RNA integrity by RIN (Bionalyzer 2100, Agilent Technologies)

Additional parameters

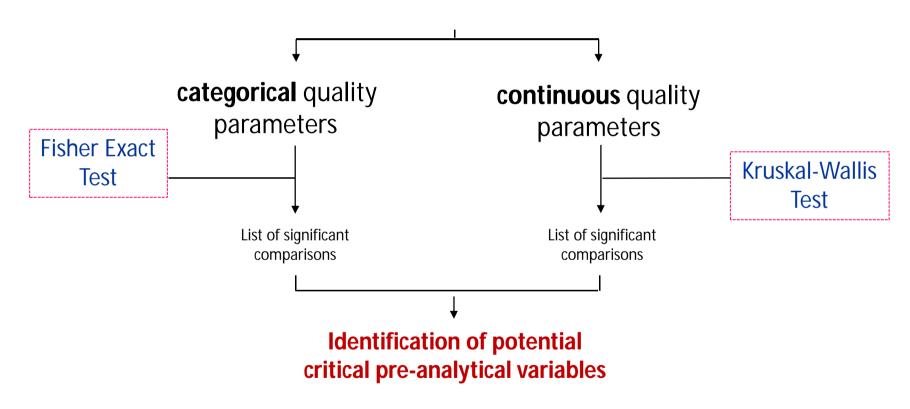
- 3. qPCR inteferences by Kineret software
- 4. DNA contamination by qPCR (RNase P intron single copy gene)
- 5. mRNA stability expression profile of selected genes by RT-qPCR
 - housekeeping: PPIB, GUSB (for relative quantification)
 - «unstable genes»: FOSB, TNFRS (by relative quantification)

Specific qPCR testings (to mimic the performance in RT-qPCR analytical assays)


6. mRNA expression profile of selected genes by RT-qPCR: GAPDH, IL1β, IL8, C-FOS* (by absolute quantification)

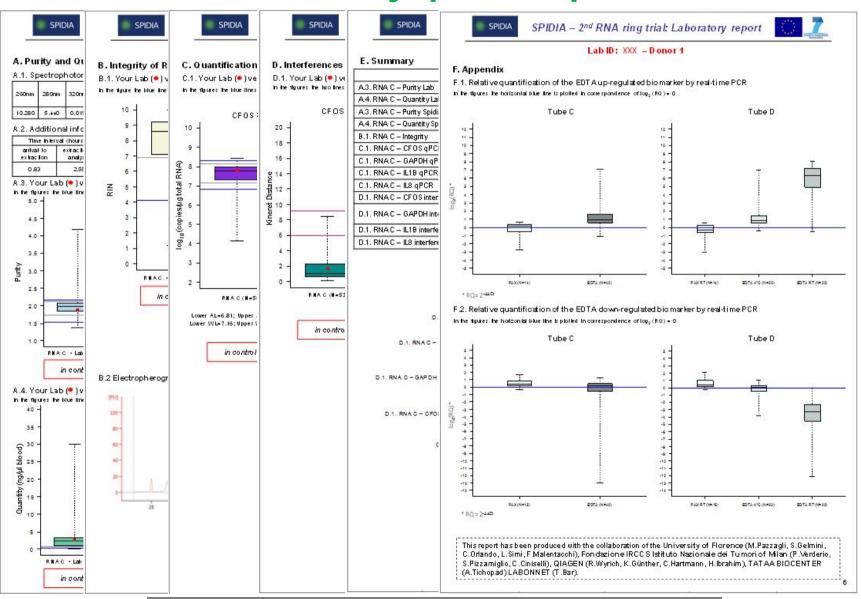
^{* (}Rainer L. et al. Clin. Chem. 2001)

Specific qPCR testings: IL1β, IL8, C-FOS



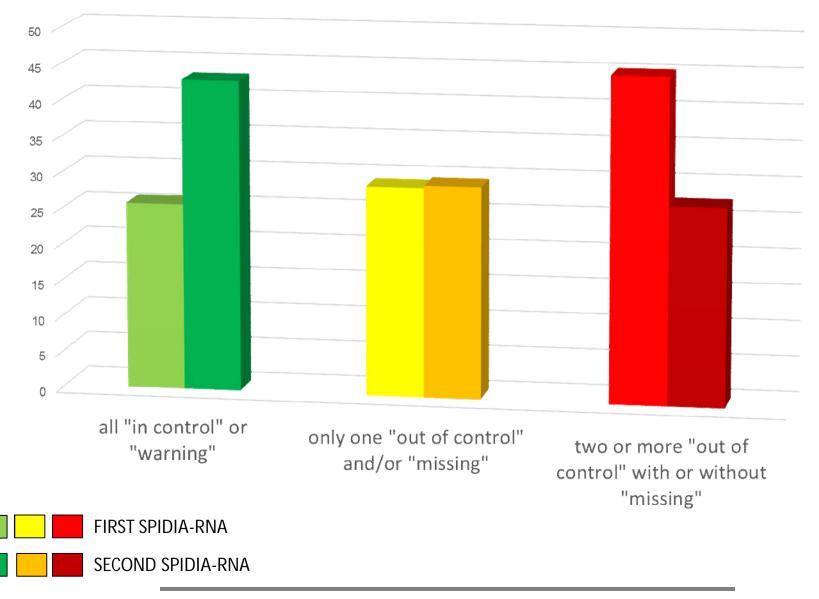
IDENTIFICATION OF CRITICAL PRE-ANALYTICAL VARIABLES

Quality parameters vs pre-analytical factors


Agresti A. Categorical Data Analysis. 1990; Hollander M, Wolfe DA. Nonparametric Statistical Methods, 1999

SPIDIA Samples evaluation at SPIDIA facilities università degli studi FIRENZE DIPARTIMENTO DI SCIENZE BIOMEDICHE SPERIMENTALI E CUNICHE statistical approach EVALUATION OF LABORATORY PERFORMANCE Laboratory specific report **Quality parameters** 3.0 Quantity, purity, RIN and gPCR data PCR kinetics interferences 2.5 1. outlier detection (M-statistic) 2. identification of specific bootstrap centiles from Kineret software Atund 2.0 outlier-free distribution IL1 B 10 bootstrap centile : 9.21 1.5 - 2.5th and 97.5th \rightarrow two sided Action Limit (ALs) - 10th and 90th \rightarrow two sided Warning Limit (WLs) 5.99 - 5th and 20th \rightarrow one sided AL and WL 1.0 RNA B (N=87) warning Lower AL=1.66; Upper AL=2.22 Lower WL=1.74; Upper WL=2.15 RIN strong outlier out of control evaluation of laboratory performance weak outlier warning in control in control Pazzagli M et al. Methods 2013; 59:20-31; RNA B (N=75) AL=2.49 WL=4.25 Malentacchi F et al. Clin Chim Acta. 2013;424:274-86; Tichopad A et al. Methods. 2010;50:308-12 in control

Samples evaluation at SPIDIA facilities laboratory specific report


SPIDIA

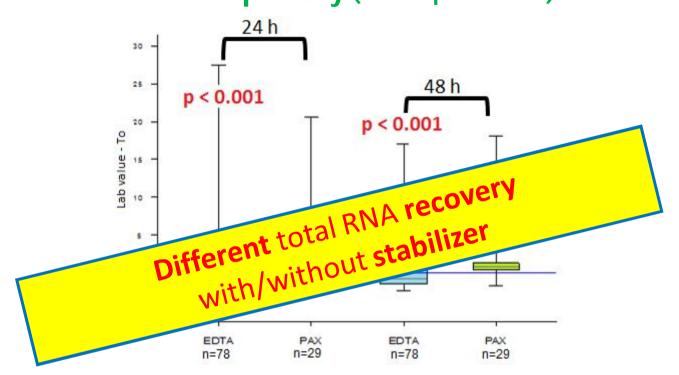
SPIDIA CONTINUES Samples evaluation at SPIDIA facilities overall performance

SPIDIA-RNA External Quality Assessments: pre-analytical variables and RNA quality parameters

RNA quality parameters mRNA quantity (known parameters)

BLOOD COLLECTION TUBE AND BLOOD STORAGE CONDITION Stabilizer versus unstabilizer

Time storage: 24h versus 48h

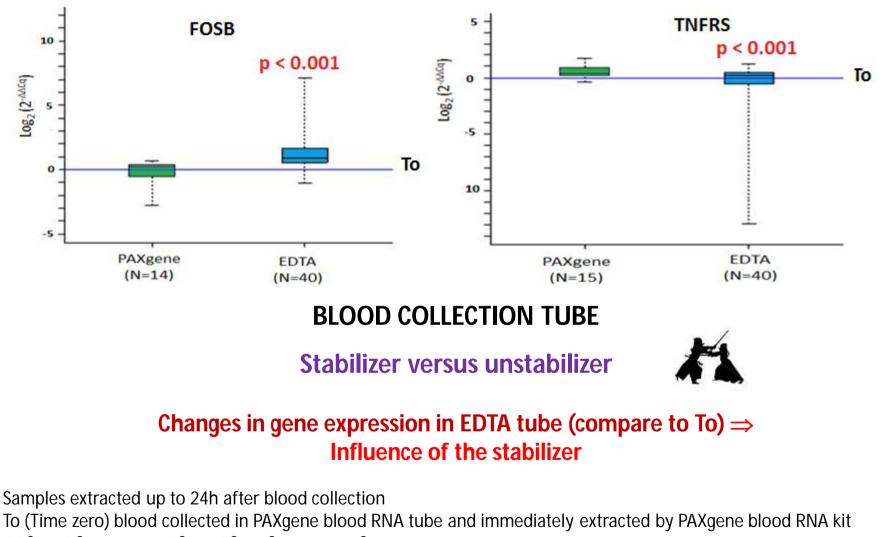

Different recovery depending on presence of stabilizer

Samples extracted within 24h or at 48h after blood collection To (Time zero) blood collected in PAXgene blood RNA tube and immediately extracted by PAXgene blood RNA kit Lab value, To = (ng/µl_blood) by Kruskal-Wallis Test, normalised to TO

RNA quality parameters mRNA quantity (known parameters)

BLOOD COLLECTION TUBE AND BLOOD STORAGE CONDITION Stabilizer versus unstabilizer

Time storage: 24h versus 48h

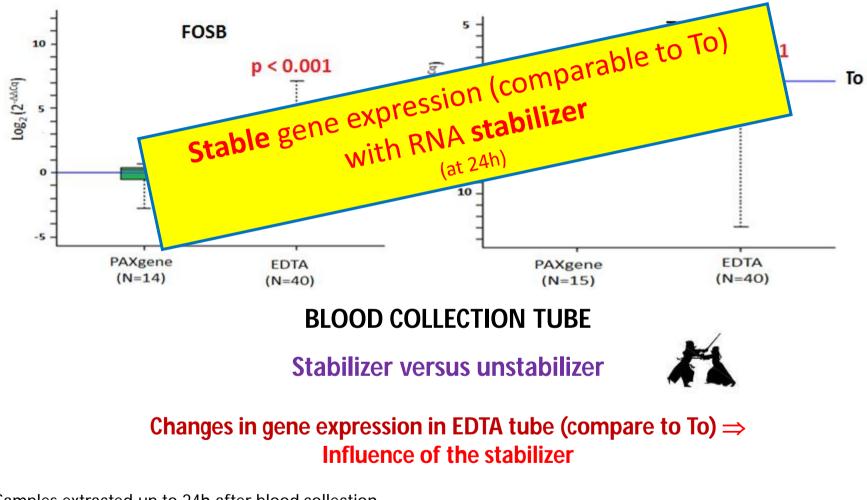

Different recovery depending on presence of stabilizer

Samples extracted within 24h or at 48h after blood collection To (Time zero) blood collected in PAXgene blood RNA tube and immediately extracted by PAXgene blood RNA kit Lab value, To = (ng/µl blood) by Kruskal-Wallis Test, normalised to TO

mRNA stability by selected «unstable genes» (additional parameters)

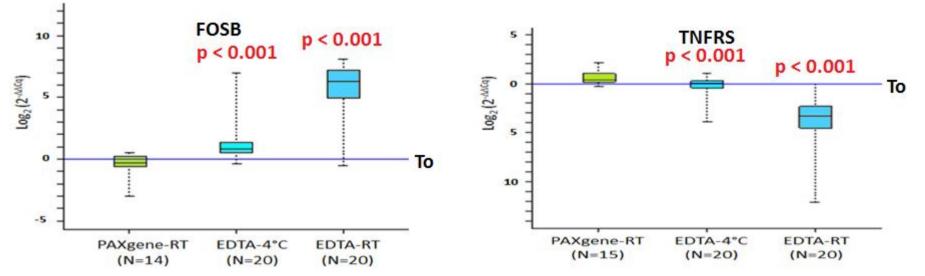
 $\Delta\Delta Cq = \Delta Cq_{sample 24h} - \Delta Cq_{To}; \Delta Cq = Cq_{target gene} - Cq_{(gemetric mean housekeepings)}$

SPIDIA


by Kruskal-Wallis Test, normalised to T0

RNA quality parameters

mRNA stability by selected «unstable genes» (additional parameters)


Samples extracted up to 24h after blood collection To (Time zero) blood collected in PAXgene blood RNA tube and immediately extracted by PAXgene blood RNA kit $\Delta\Delta Cq = \Delta Cq_{sample 24h} - \Delta Cq_{To}; \Delta Cq = Cq_{target gene} - Cq_{(gemetric mean housekeepings)}$ by Kruskal-Wallis Test, normalised to TO

RNA quality parameters

degli studi FIRENZE

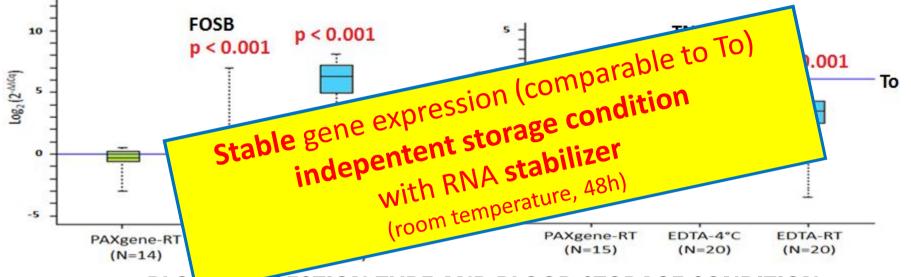
SPIDIA

mRNA stability by selected «unstable genes» (additional parameters)

BLOOD COLLECTION TUBE AND BLOOD STORAGE CONDITION

Stabilizer at Room Temperature versus unstabilizer at 4°C Stabilizer at Room Temperature versus unstabilizer at Room Temperature Unstabilizer at Room Temperature versus unstabilizer at 4°C

Changes in gene expression in EDTA tube indipendently of temperature storage (compare to To) \Rightarrow Influence of the stabilizer


Samples extracted at 48h after blood collection To (Time zero) blood collected in PAXgene blood RNA tube and immediately extracted by PAXgene blood RNA kit $\Delta\Delta Cq = \Delta Cq_{sample 24h} - \Delta Cq_{To}; \Delta Cq = Cq_{target gene} - Cq_{(gemetric mean housekeepings)}$ by Kruskal-Wallis Test, normalised to TO

RNA quality parameters

degli studi

SPIDIA

mRNA stability by selected «unstable genes» (additional parameters)

BLO COLLECTION TUBE AND BLOOD STORAGE CONDITION

Stabilizer at Room Temperature versus unstabilizer at 4°C Stabilizer at Room Temperature versus unstabilizer at Room Temperature Unstabilizer at Room Temperature versus unstabilizer at 4°C

Changes in gene expression in EDTA tube indipendently of temperature storage (compare to To) \Rightarrow Influence of the stabilizer

Samples extracted at 48h after blood collection To (Time zero) blood collected in PAXgene blood RNA tube and immediately extracted by PAXgene blood RNA kit $\Delta\Delta Cq = \Delta Cq_{sample 24h} - \Delta Cq_{To}; \Delta Cq = Cq_{target gene} - Cq_{(gemetric mean housekeepings)}$ by Kruskal-Wallis Test, normalised to TO

Other additional parameters

DNA contamination on RNA samples

"genomic DNA (gDNA) contamination is an inherent problem during RNA purification that can lead to non-specific amplification and aberrant results in reverse transcription quantitative PCR (RT-qPCR)...Since gDNA contamination levels are frequently not uniform between samples ...mainly affected if the qPCR assays can not be design spanning exons."

(Correction of RT-qPCR data for genomic DNA-derived signals with ValidPrime, Laurel at al. NAR 2012)

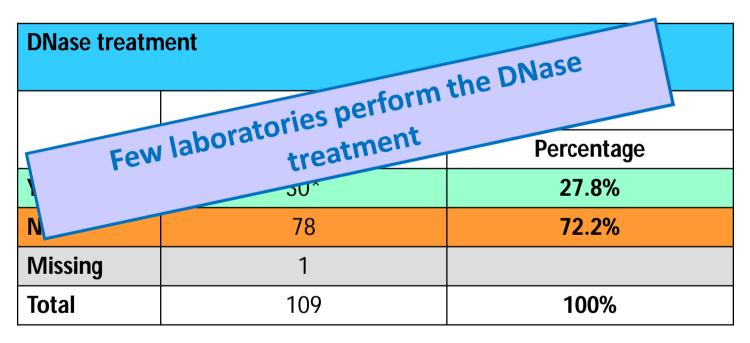
SPIDIA SPIDIA Samples evaluation at SPIDIA facilities

DNase treatment in RNA samples extracted from participants

... from the «result form»

DNase treatment							
	Overall evaluation						
	N. lab	Percentage					
Yes	30*	27.8%					
No	78	72.2%					
Missing	1						
Total	109	100%					

DNAse treatment performed by all the PAXgene RNA extraction kit


* Including 24 using PAXgene RNA extraction kit

SPIDIA CONSTRUCTION AT SPIDIA facilities

DNase treatment in RNA samples extracted from participants

... from the «result form»

DNAse treatment performed by all the PAXgene RNA extraction kit

* Including 24 using PAXgene RNA extraction kit

SPIDIA SPIDIA Samples evaluation at SPIDIA facilities

DNA contamination in RNA samples extracted from participants

DNA contamination in RNA samples*						
	N. sample	Percentage				
no DNA contamination	54	24.8%				
Low (<10 copies/ng RNA)	16	7.3%				
Medium (10 <copies <1000)<="" ng="" rna="" th=""><th>124</th><th>56.9%</th></copies>	124	56.9%				
High (>1000 copies/ng RNA)	24	11.0%				
total	218	100%				

...addictional quality parameters by qPCR (RNase P – intron - single copy gene)

* All the RNA samples were analysed (RNA C and RNA D = 218 samples)

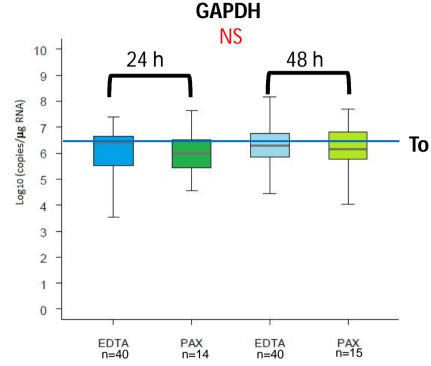
SPIDIA SPIDIA SAmples evaluation at SPIDIA facilities

DNA contamination in RNA samples extracted from participants

DNA contamination in RNA samples*		
	N. sample	Percentage
no DNA contamination	54	24.8%
Low (<10 copies/ng RNA) Medium (10 <com <="" dn="" of="" presence="" th=""><th>16 In RNA sam</th><th>ples</th></com>	16 In RNA sam	ples
Medium (10 <com dna<="" of="" presence="" th=""><th>124</th><th>56.9%</th></com>	124	56.9%
High (>1000 copies/ng RNA)	24	11.0%
total	218	100%

...addictional quality parameters by qPCR (RNase P – intron - single copy gene)

* All the RNA samples were analysed (RNA C and RNA D = 218 samples)


SPIDIA-RNA External Quality Assessments: simulation of analytical testing Do the pre-analytical variables influence a RT-qPCR based assay?

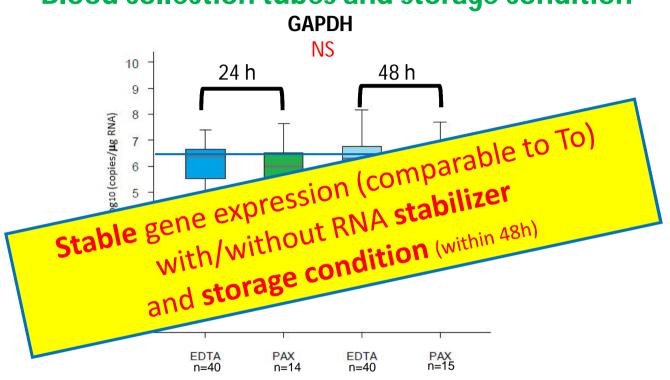
Expression of GAPDH and IL8 by RT-qPCR

RNA quality parameters Blood collection tubes and storage condition

SPIDIA

All the samples had gene expression close to To

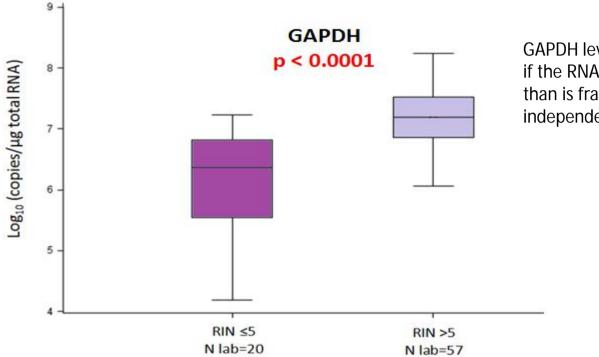
No significant changes in the results of RT-qPCR-based analytical test


Samples extracted within 24h or at 48h after blood collection To (Time zero) blood collected in PAXgene blood RNA tube and immediately extracted by PAXgene blood RNA kit by Kruskal-Wallis Test, normalised to TO

Advanced in qPCR & dPCR, Barcelona, 14 May 2014

RNA quality parameters Blood collection tubes and storage condition

SPIDIA


All the samples had gene expression close to To

No significant changes in the results of RT-qPCR-based analytical test

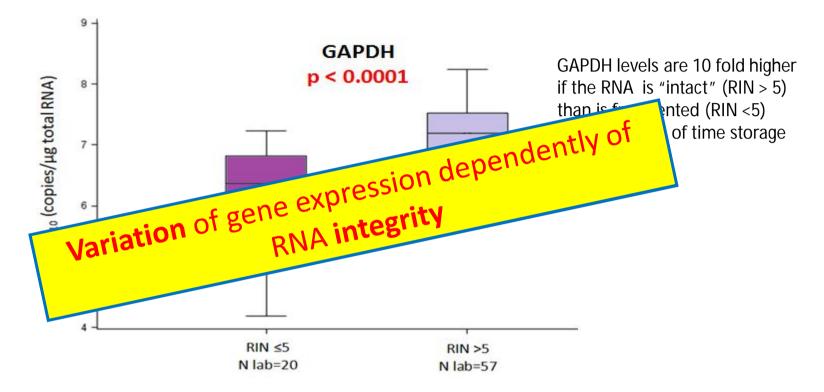
Samples extracted within 24h or at 48h after blood collection To (Time zero) blood collected in PAXgene blood RNA tube and immediately extracted by PAXgene blood RNA kit by Kruskal-Wallis Test, normalised to TO

Advanced in qPCR & dPCR, Barcelona, 14 May 2014

RNA quality parameters RNA integrity

GAPDH levels are 10 fold higher if the RNA is "intact" (RIN > 5) than is fragmented (RIN <5) independently of time storage

Different gene expression depenfing on the integrity of RNA


The integrity of RNA (by RIN, cutoff =5) can influence by the results of RT-qPCR-based analytical test

RIN cutoff = 5^*

*S. Fleige, et al. Biotechnol. Let 28 (2006) 1601-13

by Kruskal-Wallis Test

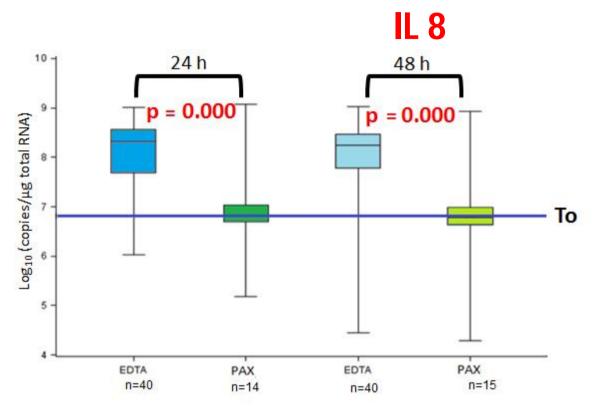
RNA quality parameters RNA integrity

Different gene expression depenfing on the integrity of RNA

The integrity of RNA (by RIN, cutoff =5) can influence by the results of RT-qPCR-based analytical test

RIN cutoff = 5^*

*S. Fleige, et al. Biotechnol. Let 28 (2006) 1601-13


by Kruskal-Wallis Test

Advanced in qPCR & dPCR, Barcelona, 14 May 2014

Influence on RT-qPCR based assay Blood collection tubes and storage condition

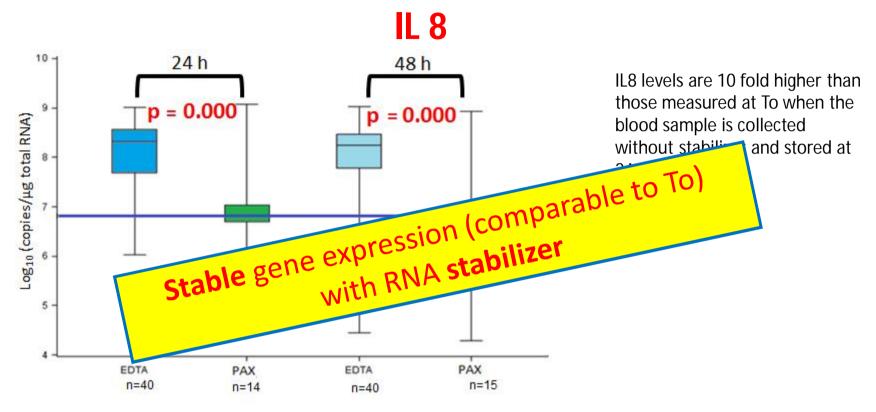
IL8 levels are 10 fold higher than those measured at To when the blood sample is collected without stabilizer and stored at 24 h/48 h

The presence of stabilizer in the blood collection tube maintains the gene expression close to To

The absence of stabilizer in the blood collection tube and its time storage condition can influence the results of RT-qPCR-based analytical test

Samples extracted within 24h or at 48h after blood collection

To (Time zero) blood collected in PAXgene blood RNA tube and immediately extracted by PAXgene blood RNA kit

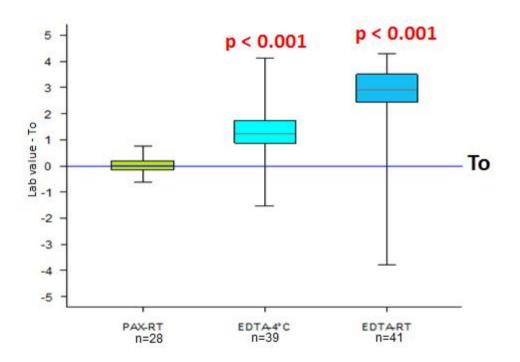

by Kruskal-Wallis Test

Influence on RT-qPCR based assay

Blood collection tubes and storage condition

The presence of stabilizer in the blood collection tube maintains the gene expression close to To

The absence of stabilizer in the blood collection tube and its time storage condition can influence the results of RT-qPCR-based analytical test


Samples extracted within 24h or at 48h after blood collection

To (Time zero) blood collected in PAXgene blood RNA tube and immediately extracted by PAXgene blood RNA kit

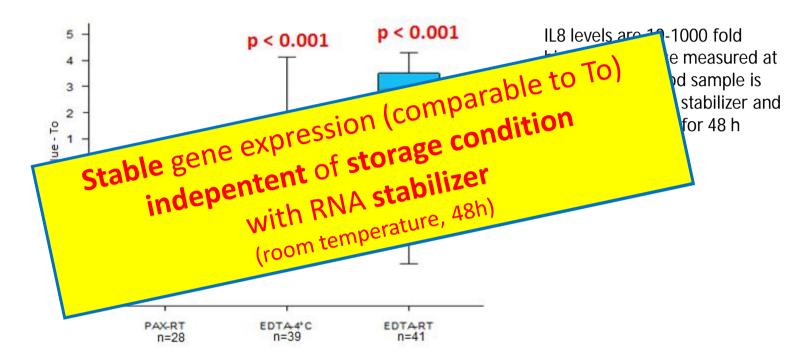
by Kruskal-Wallis Test

Influence on RT-qPCR based assay Blood collection tubes and storage condition IL 8

SPIDIA

IL8 levels are 10-1000 fold higher than those measured at T0 when the blood sample is collected without stabilizer and stored at +4°C/RT for 48 h

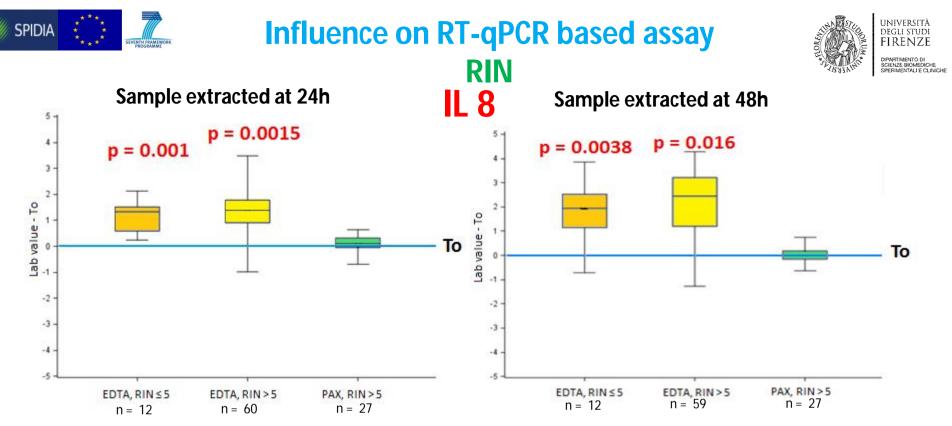
The presence of stabilizer in the blood collection tube maintains the gene expression close to To


The absence of stabilizer in the blood collection tube and its temperature storage condition can influence the results of RT-qPCR-based analytical test

Samples extracted within 24h or at 48h after blood collection To (Time zero) blood collected in PAXgene blood RNA tube and immediately extracted by PAXgene blood RNA kit Lab value, To = log₁₀(copies/µg RNA) by Kruskal-Wallis Test, normalised to T0

Influence on RT-qPCR based assay Blood collection tubes and storage condition IL 8

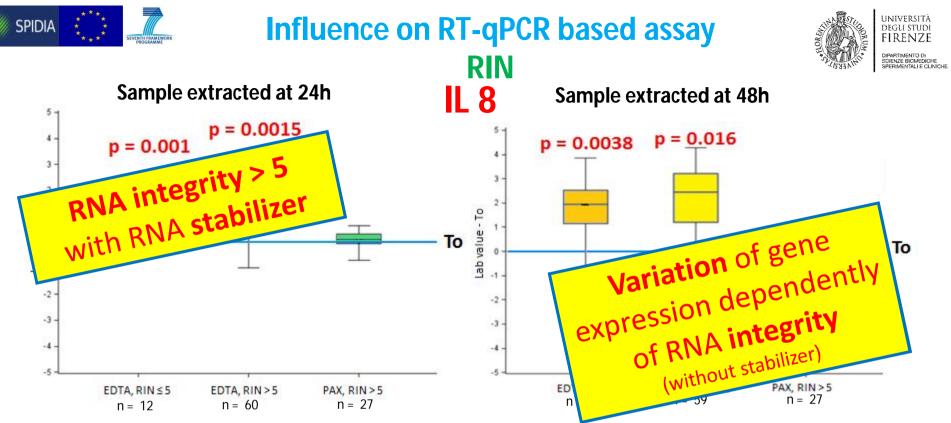
SPIDIA



The presence of stabilizer in the blood collection tube maintains the gene expression close to To

The absence of stabilizer in the blood collection tube and its temperature storage condition can influence the results of RT-qPCR-based analytical test

Samples extracted within 24h or at 48h after blood collection To (Time zero) blood collected in PAXgene blood RNA tube and immediately extracted by PAXgene blood RNA kit Lab value, To = log₁₀(copies/µg RNA) by Kruskal-Wallis Test, normalised to TO


IL8 RNA levels measured in EDTA blood collection tubes are 10-100 fold higher than those measured at T0 independently by the RIN value Different values depending on the RIN value

The presence of stabilizer in the blood collection tube maintains the RNA integrity (more than 5)

The absence of stabilizer in the blood collection tube and its temperature storage condition can influence the results of RT-qPCR-based analytical test

To (Time zero) blood collected in PAXgene blood RNA tube and immediately extracted by PAXgene blood RNA kit Lab value, To = $log_{10}(copies/\mu g RNA)$

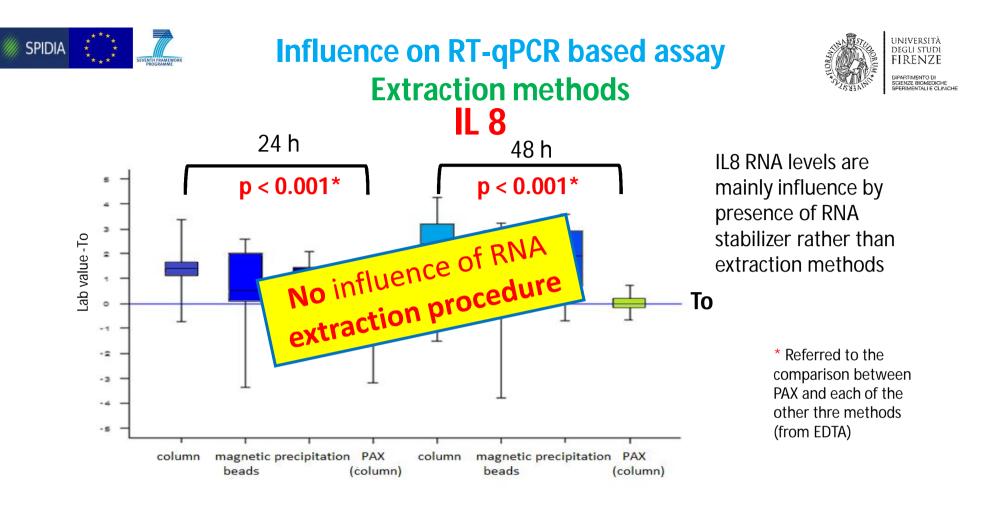
by Kruskal-Wallis Test, normalised to T0

IL8 RNA levels measured in EDTA blood collection tubes are 10-100 fold higher than those measured at T0 independently by the RIN value Different values depending on the RIN value

The presence of stabilizer in the blood collection tube maintains the RNA integrity (more than 5)

The absence of stabilizer in the blood collection tube and its temperature storage condition can influence the results of RT-qPCR-based analytical test

To (Time zero) blood collected in PAXgene blood RNA tube and immediately extracted by PAXgene blood RNA kit Lab value, To = $log_{10}(copies/\mu g RNA)$


by Kruskal-Wallis Test, normalised to T0

The presence of stabilizer in the blood collection tube maintains the mRNA expression close to To, within the RNA extracted from blood collected without stabilizer no significant differences were observed

The extraction method itself doesn't influence the results of RT-qPCR-based analytical test

To (Time zero) blood collected in PAXgene blood RNA tube and immediately extracted by PAXgene blood RNA kit Lab value, To = $log_{10}(copies/\mu g RNA)$

The presence of stabilizer in the blood collection tube maintains the mRNA expression close to To, within the RNA extracted from blood collected without stabilizer no significant differences were observed

The extraction method itself doesn't influence the results of RT-qPCR-based analytical test

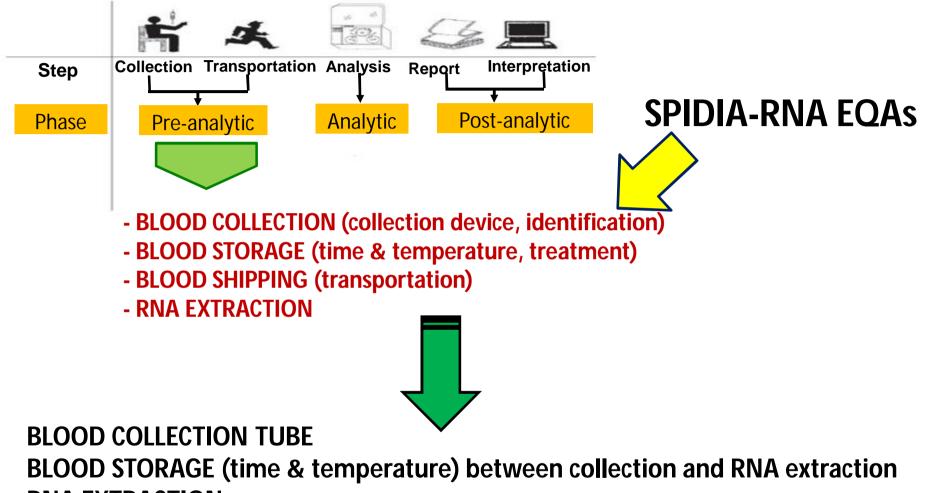
To (Time zero) blood collected in PAXgene blood RNA tube and immediately extracted by PAXgene blood RNA kit Lab value, To = $log_{10}(copies/\mu g RNA)$

SPIDIA-RNA EQAs:

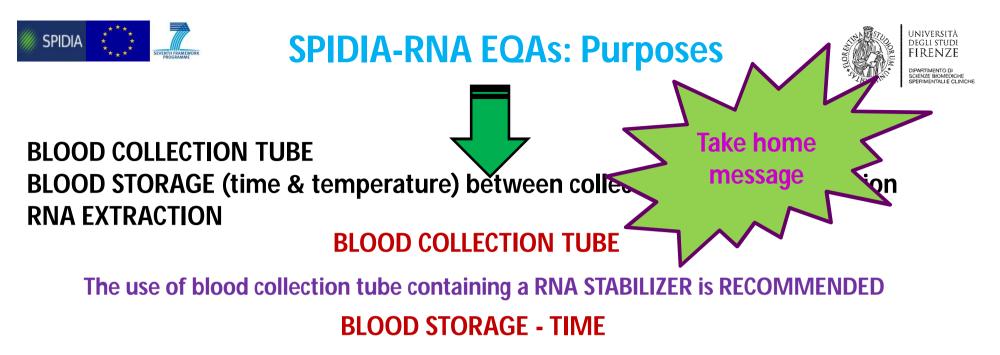
tools for evidence-based guidelines

STATEMENT:

• Gene expression in BLOOD SAMPLES may be affected by several factors that can induce or repress gene expression or lead to degradation of RNA if it is not handled properly


EQAs evidence-based results:

- Most of the laboratories do not take care of the use and importance of DNase treatment
- The presence/absence of a RNA stabilizer in the blood collection tube influences the evaluation of mRNA profile
- The presence/absence of a RNA stabilizer in the blood collection tube influences the integrity of RNA
- The used of blood collection tube containing stabilizer allows to preserve gene expression and RNA integrity, maintaining the gene expression and the RNA integrity close to the profile of the patient (at the moment of blood collection)
- Participate to External Quality Assessment Programmes



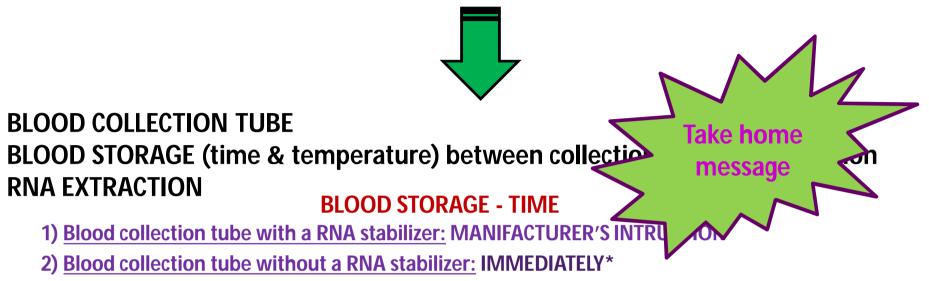
SPIDIA-RNA EQAs: Purposes

RNA EXTRACTION

- 1) <u>Blood collection tube with a RNA stabilizer:</u> MANIFACTURER'S INSTRUCTIONS
- 2) <u>Blood collection tube without a RNA stabilizer:</u> IMMEDIATELY*

BLOOD STORAGE - TEMPERATURE

1) <u>Blood collection tube with a RNA stabilizer:</u> MANIFACTURER'S INSTRUCTIONS (room temperature)


2) Blood collection tube without a RNA stabilizer: IMMEDIATELY*

RNA EXTRACTION Treatment with DNase

SPIDIA-RNA EQAs: Purposes

BLOOD STORAGE - TEMPERATURE

1) <u>Blood collection tube with a RNA stabilizer:</u> MANIFACTURER'S INTRUCTION (room temperature)

2) Blood collection tube without a RNA stabilizer: IMMEDIATELY*

IMMEDIATELY* It is necessary to perform VALIDATION STUDIES to monitor and verify the RNA QUALITY of the TARGET GENE(s) depending on "TIME & TEMPERATURE" STORAGE CONDITION

SPIDIA results have been provided to CEN*/TC 140 WG3 "In vitro Diagnostic Medical Devices" as an input and a potential basis for a technical work on European Standards.

A Technical Specification (TS) Document:

Molecular in-vitro diagnostic examinations — Specifications for pre-examination processes for blood — Cellular RNA

is under development and it should be released within the end of the 2014

(* CEN = European Committee for Standardization)

Acknowledgements

SPIDIA WP 1.2 partners:

- QIAGEN
- UNIFI
- IRCCS Milano
- TATAA biocenter
- Labonnet

UNIFI team

SPIDIA-RNA participants (202 laboratories) SPIDIA WP 1.3 SPIDIA team

This work has received funding from the European Union Framework Programme 7 under grant agreement no. 222916, SPIDIA project: www.spidia.eu

thanks

SPIDIA

Advanced in aDOD 0 JDOD Develope 44 Mars 0044