

We are

the world's largest provider of hands-on training in qPCR, Europe's leading provider of nucleic acid analysis services by qPCR, and Sweden's most

Two-Tailed PCR and other methods for Precision Diagnostics

TATAA Biocenter

TATAA Biocenter was founded in 2001 by pioneers in qPCR, and have extensive knowledge and hands-on experience within nucleic acid analysis. TATAA Biocenter offers a full range of RT-qPCR and Next-Generation Sequencing research services, and develops and performs a broad spectrum of hands-on courses world-wide. TATAA also offers a carefully chosen selection of high-quality products for qPCR and NGS applications. We are proud to provide expert support from our local specialists, from sample preparation to final result.

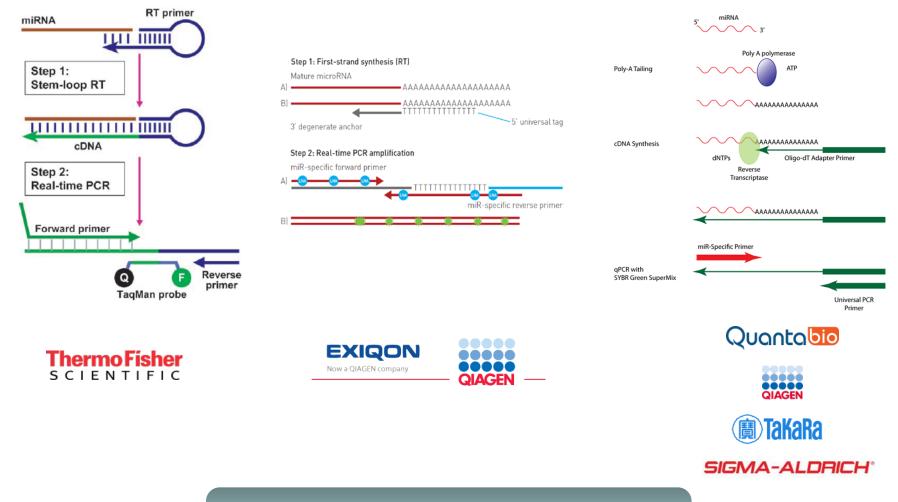
- READ MORE -

Search the site

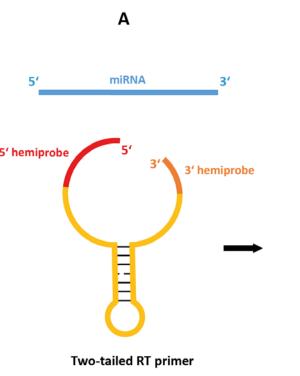
TATAA Biocenter AB March 8, 2019

TATAA Biocenter AB

Best Nucleic Acid Analysis Service Provider - Europe

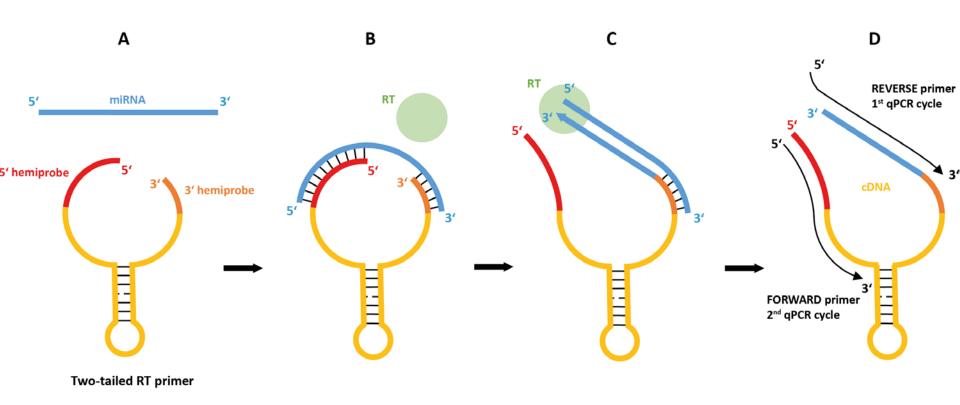

Challenges analyzing miRNAs (and other short NA)

- microRNAs are short (most 21-22 nt) and cannot fit two conventional PCR primers
- There is no common sequence feature to use for the enrichment and amplification.
- The mature miRNA sequence is present also in the pre- and the pri-miRNAs
- miRNA isoforms (isomiRs) might evade capture, due to terminal heterogeneity

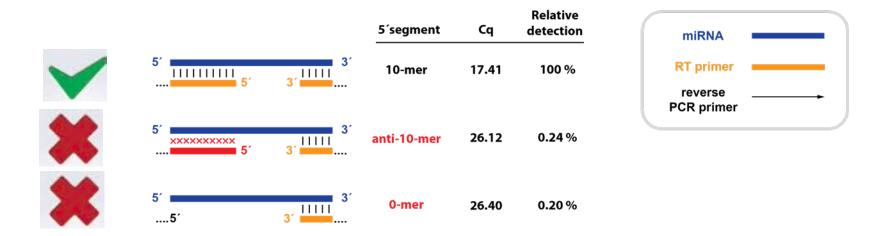


Current methods make the microRNA longer

- Extension reduces sensitivity
- One probe only limits specificity

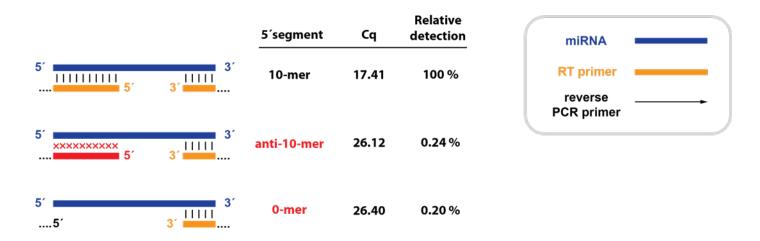

Two-tailed RT-qPCR

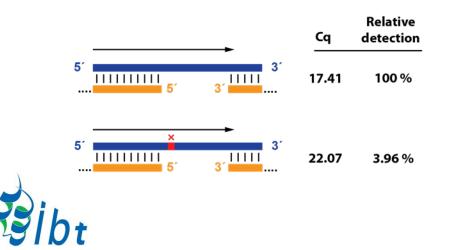
Two-tailed RT-qPCR



Design concept

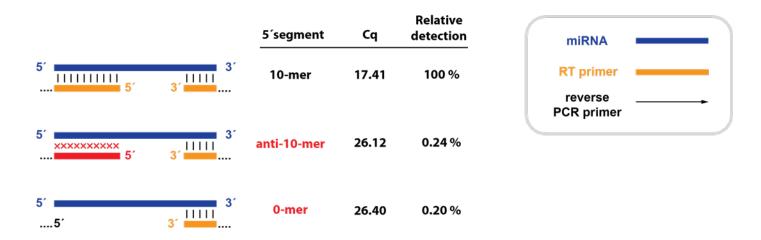
5' complementary segment contributes to the sensitivity of the assays

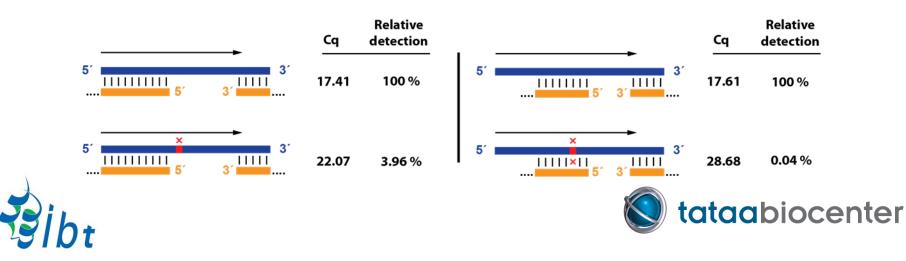




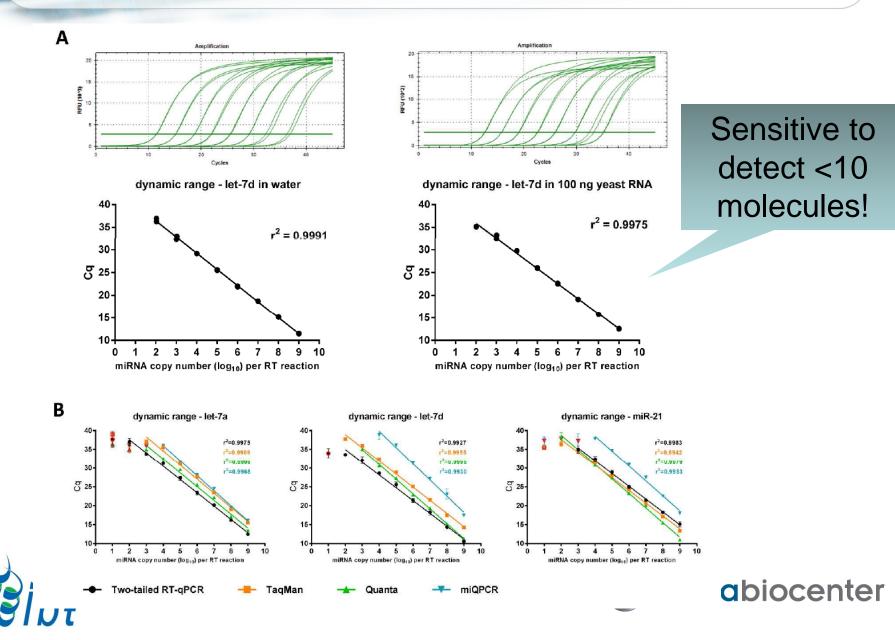
Design concept

5' complementary segment contributes to the **sensitivity** of the assays


◎ 5' complementary segment contributes to the **specificity** of the assays



Design concept


5' complementary segment contributes to the **sensitivity** of the assays

◎ 5' complementary segment contributes to the **specificity** of the assays

Sensitivity and dynamic range

Sequence specificity across the entire microRNA

С

			Rela	ative de	tection	(%)		
	let-7a	let-7b	let-7c	let-7d	let-7e	let-7f	let-7g	let-7i
A	100.00	0.07	0.46	0.14	0.31	0.01	0.00	0.00
E	0.00	100.00	0.61	0.00	0.00	0.00	0.00	0.00
	B 0.00 100.00 0.61 0.00 0.00 0.00 0.00 0.01 C 0.01 0.18 100.00 0.00	0.00						
Assays m n	0.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00
ASS E	0.15	0.00	0.00	0.01	100.00	0.00	0.00	0.00
F	0.18	0.00	0.01	0.00	0.00	100.00	0.02	0.00
G	0.00	0.00	0.00	0.00	0.00	0.01	100.00	0.00
- 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00

Two-tailed RT-qPCR

				Rela	ative de	etection	(%)		
		let-7a	let-7b	let-7c	let-7d	let-7e	let-7f	let-7g	let-7i
	Α	100.00	0.27	50.71	2.17	1.58	2.47	1.55	0.00
	в	0.09	100.00	32.84	0.00	0.00	0.00	0.00	0.02
	С	48.91	27.00	100.00	0.31	0.56	0.95	0.06	0.00
Assays	D	0.12	0.33	0.07	100.00	0.00	0.00	0.00	0.00
Ass	Е	0.13	0.13	0.13	0.00	100.00	0.03	0.03	0.02
100	F	0.73	0.85	0.72	0.02	0.00	100.00	0.05	0.04
	G	0.02	0.00	0.01	0.00	0.00	0.26	100.00	16.84
	I	0.00	0.00	0.00	0.00	0.00	0.00	0.38	100.00

Quanta

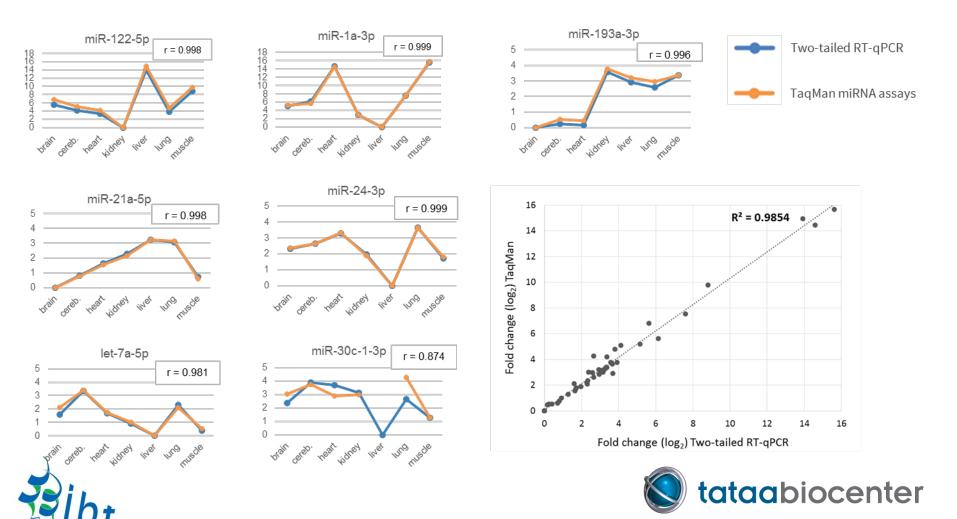
В

name	sequence
let-7a	UGAGGUAGUAGGUUGUAUAGUU
let-7b	UGAGGUAGUAGGUUGU <mark>GUG</mark> GUU
let-7c	UGAGGUAGUAGGUUGUAU <mark>G</mark> GUU
let-7d	AGAGGUAGUAGGUUGCAUAGUU
let-7e	UGAGGUAG <mark>G</mark> AGGUUGUAUAGUU
let-7f	UGAGGUAGUAG <mark>A</mark> UUGUAUAGUU
let-7g	UGAGGUAGUAG <mark>U</mark> UUGUA <mark>C</mark> AGUU
let-7i	UGAGGUAGUAGUUUGUGCUGUU

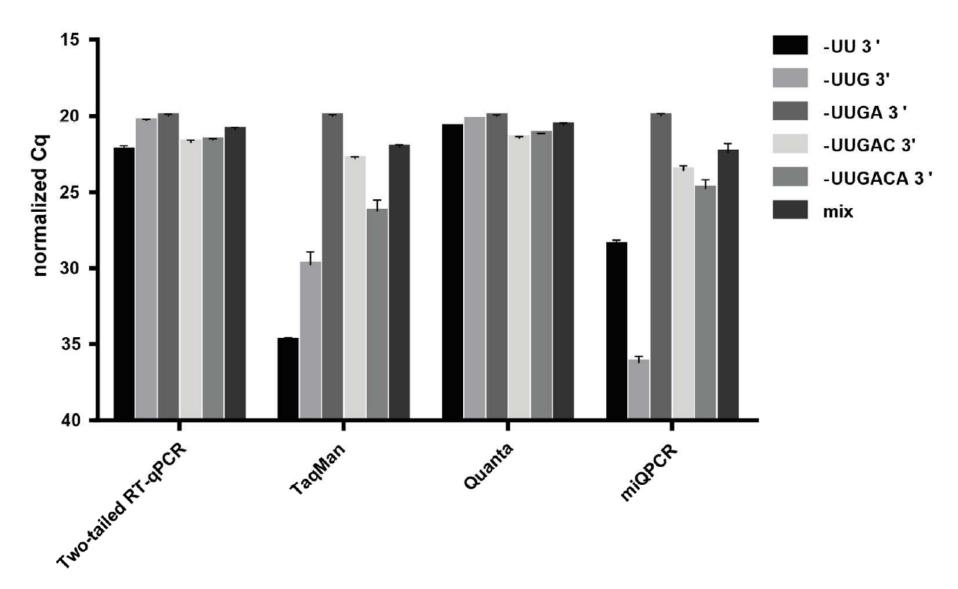
				Rela	ative de	tection	(%)		
		let-7a	let-7b	let-7c	let-7d	let-7e	let-7f	let-7g	let-7i
ļ	А	100.00	0.44	20.89	2.20	3.68	8.38	0.37	0.00
	в	0.19	100.00	22.48	0.00	0.00	0.01	0.00	0.01
	С	0.09	1.77	100.00	0.00	0.00	0.01	0.00	0.00
Assays	D	2.59	0.01	1.37	100.00	0.01	0.01	0.00	0.00
Ass	Е	9.88	0.07	7.87	0.09	100.00	0.10	0.03	0.00
	F	2.00	0.16	0.22	0.12	0.01	100.00	0.15	0.00
	G	0.96	0.00	0.32	0.01	0.01	2.72	100.00	0.02
	L	0.00	0.00	0.00	0.00	0.00	0.00	0.01	100.00

TaqMan

				Rela	ative de	tection	(%)		
		let-7a	let-7b	let-7c	let-7d	let-7e	let-7f	let-7g	let-7i
	А	100.00	12.64	55.52	101.75	122.47	76.72	48.68	0.69
	в	7.78	100.00	45.46	1.08	0.06	0.08	0.01	1.39
	С	66.40	75.14	100.00	28.76	1.13	9.15	0.45	0.01
of non-	D	14.84	0.00	0.09	100.00	0.21	0.19	0.03	0.00
3	Е	51.07	0.04	20.96	27.57	100.00	6.52	0.99	0.00
	F	54.28	0.01	0.56	11.85	3.28	100.00	14.45	0.05
	G	0.07	0.00	0.00	0.00	0.00	0.18	100.00	0.91
	L	0.00	0.00	0.00	0.00	0.00	0.00	7.43	100.00

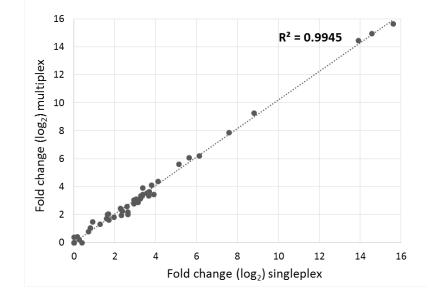

miQPCR

	Mature	Precursor	Relative detection
let-7a	17.74	21.31	6.98%
let-7b	16.98	21.22	5.31%
let-7f	16.85	23.78	0.82%


ocenter

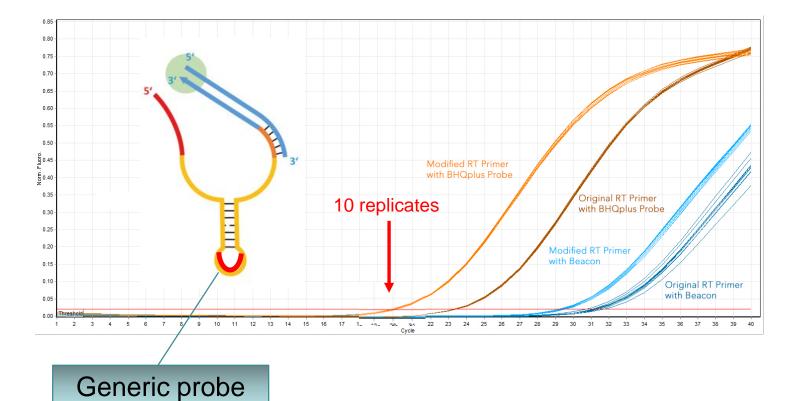
Benchmarking in biological samples

- Expression of 8 targets in 7 mouse tissues measured and compared with TaqMan miRNA assays
- O Excellent correlation of relative expression profiles between the two methods


Discrimination of isomiRs

2-tube Multiplexing

8 different RT primers were pooled for multiplex reverse transcribed and subsequent singleplex qPCR


-		Δ Cq (relative to singleplex protocol)								
Sample	miR-122	miR-193a	miR-1a	miR-21a	miR-24	miR-30c	Let-7a			
brain	-0.12	0.93	1.26	2.41	0.11	-0.08	0.72			
cereb.	0.09	0.99	1.67	2.17	0.20	0.28	0.85			
heart	-0.21	0.67	1.38	2.06	-0.34	-0.13	0.50			
kidney	0.32	0.95	1.90	2.26	-0.14	0.07	0.25			
liver	-0.20	0.85	1.73	2.50	-0.28	-0.20	0.44			
lung	0.02	0.96	1.47	2.36	0.04	0.44	0.76			
muscle	-0.11	0.87	1.70	2.33	-0.17	-0.23	1.24			
average	-0.03	0.89	1.59	2.30	-0.08	0.02	0.68			
st.dev.	0.19	0.11	0.22	0.15	0.20	0.25	0.32			

1-tube Multiplexing

Nucleic Acids Research, 2017 1 doi: 10.1093/nar/gkx588

Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification

Peter Androvic^{1,2}, Lukas Valihrach¹, Julie Elling³, Robert Sjoback³ and Mikael Kubista^{1,3,*}

¹Laboratory of Gene Expression, Institute of Biotechnology CAS, Biocev, Vestec 252 50, Czech Republic, ²Laboratory of Growth Regulators, Faculty of Science, Palacky University, Olomouc 783 71, Czech Republic and ³TATAA Biocenter AB, Gothenburg 411 03, Sweden

Received December 06, 2016; Revised June 07, 2017; Editorial Decision June 24, 2017; Accepted June 28, 2017

Generic probe

S 🖉	PIDIA	Standardisation		eneric pre-analytical tools a w.spidia.eu	and procedures for i	n-vitro diagn	ostics
Home	About Us	About the Project	News and Press	Events and Trainings	Publications	Links	8
		Home					
NEWSLETTER		ABOUT SPID	IA AND SPIDIA4P				
Subscribe t	o our						

newsletter to receive latest

news about the project

Visit our contact form to

contact SPIDIA and to

submit comments and

questions about this

SEVENTH FRAMEWORK PROGRAMME

website.

CONTACT US

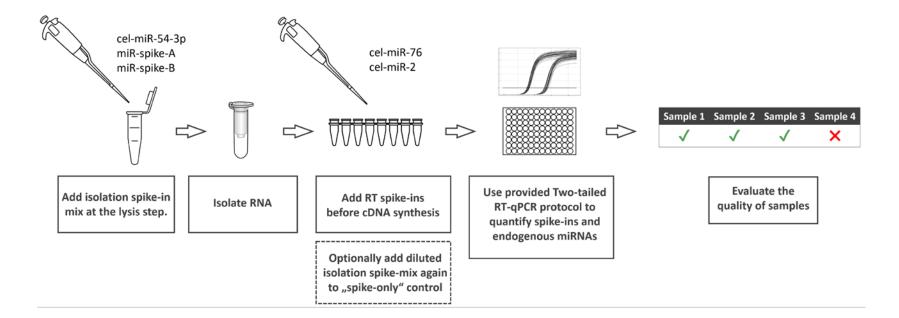
SPIDIA was a 4.5-year project funded by the European Union FP7 programme. It brought together 16 leading academic institutions, international organisations and life sciences companies, coordinated by QIAGEN GmbH. The project tackled the standardisation and improvement of pre-analytical procedures for in-vitro diagnostics. Various new pre-analytical technologies were developed. Within the CEN/Technical Committee 140 for "In vitro medical devices", SPIDIA's results enabled to develop and introduce the first 9 CEN Technical Specifications (CEN/TS) for pre-analytical workflows in Europe.

The SPIDIA4P project builds on SPIDIA's results and is funded by the European Union's Horizon 2020 research and innovation programme. The consortium of 19 highly experienced partners from private industry including SMEs, public institutions and one European Standards Organisation is again coordinated by QIAGEN GmbH. It plans to initiate, develop and implement a comprehensive portfolio of an additional 14 pan-European pre-analytical CEN/TS and ISO/IS documents as well as external quality assessment schemes (EQAs), addressing the important pre-analytical workflows applied to personalised medicine.

Quality control tool box for microRNA

	<mark>5'-Phos</mark>	for sequencing	<mark>40 < GC/% < 6</mark> 4	<mark>4</mark>
Usage	Name	Sequence	GC %	Origin
Isolation	cel-miR-54-3p	/5Phos/UACCCGUAAUCUUCAUAAUCCGA	G 41.7 C	. elegans
spike-ins	<u>miR</u> -spike-A	/5Phos/UGCAGCCCUACCGACACGUUCC	63.6 a	rtificial
зріке-шз	miR-spike-B	/5Phos/ACUCAGGUUGUAGGAGCGGUCU	J 52.2 a	rtificial
PT spike ins	cel-miR-76-3p	/5Phos/UUCGUUGUUGAUGAAGCCUUGA	40.9 C	. elegans
RT spike-ins	cel-miR-2-3p	/5Phos/UAUCACAGCCAGCUUUGAUGUGC	C 47.8 C	. elegans

Endogenous controls mir-451a mir-23a


Test system for optimization

- Human plasma (K₂EDTA BD Vacutainer tubes; 1500g/3000g)
- Human serum (8.5 ml, vacutainer SST II Advanced tubes)
- Rat serum (1ml Eppendorf tube; 1000g/3000g)
- Extraction: miRNeasy Serum/Plasma Advance kit (Qiagen)
- RT: GrandScript FreePrime (TATAA)
- qPCR: GrandMaster SYBR (TATAA)

Workflow

200x

200x

Isolation spike-in mix

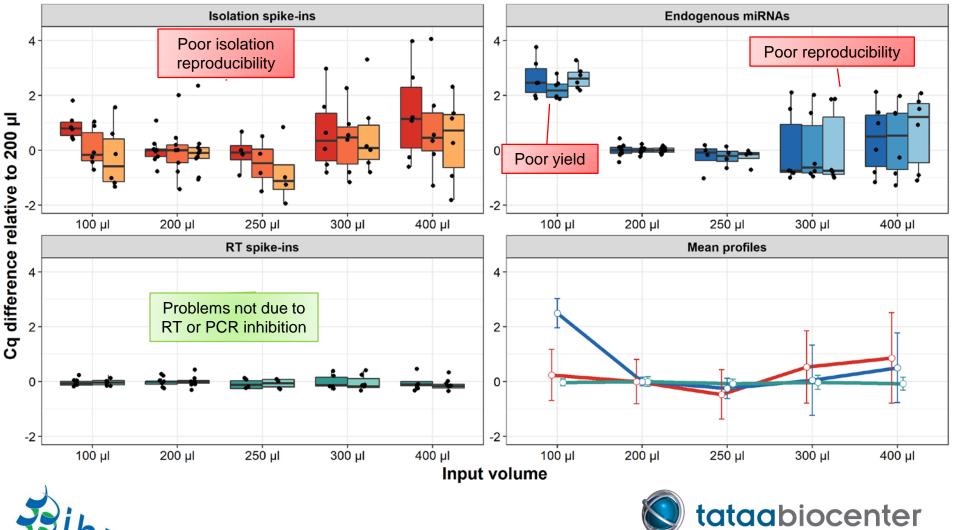
RNA oligo	Final concentration (copies/µl)
cel-miR-54	1.00E+07
spike_A	2.00E+05
spike_B	4.00E+03

RT spike-in mix

RNA oligo	Final concentration (copies/µl)	
cel-miR-76	1.00E+07	40000x
cel-miR-2	4.00E+03	

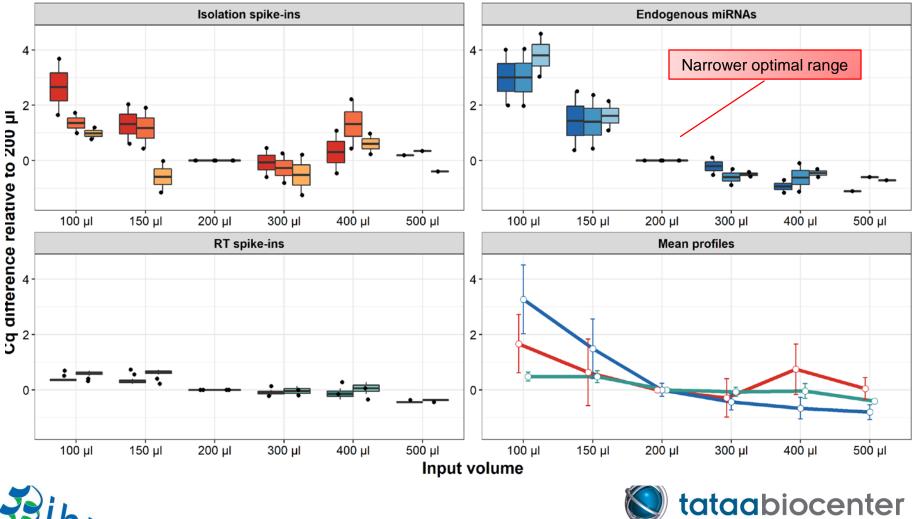
Factors tested/optimized

- Initial input volume used for RNA isolation. Risk for carry over of contaminants. Saturation of column. Most vendors recommend: 200 μl. However, optimum volume seem to depend on:
 - isolation protocol
 - sample type
 - organism.
- **Hemolysis** was prepared by addition of lysed erythrocytes (by freeze-thawing) in a serial dilution. Ratio mir-451a:mir-23a is tested as indicator for hemolysis
 - Mir-451a is highly abundant in erythrocytes
 - Mir-23a is abundant in serum/plasma, but not in erythrocytes
- Effect of **glycogen** as carrier



Human plasma

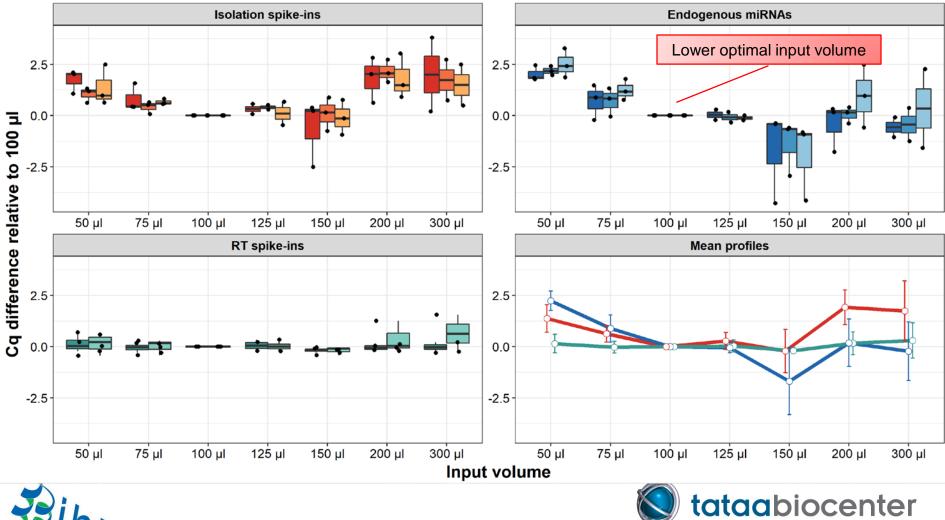
miRNeasy Serum/Plasma Advanced kit (Qiagen)


A Human plasma

Human serum

miRNeasy Serum/Plasma Advanced kit (Qiagen)

В Human serum

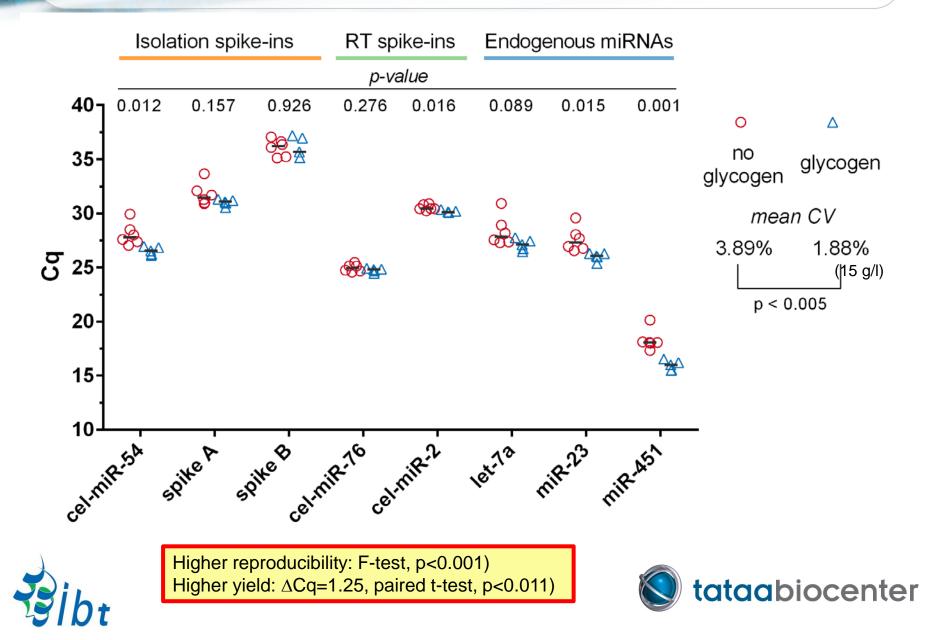


Rat serum

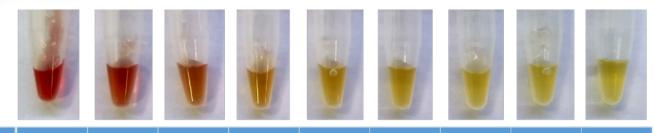
miRNeasy Serum/Plasma Advanced kit (Qiagen)

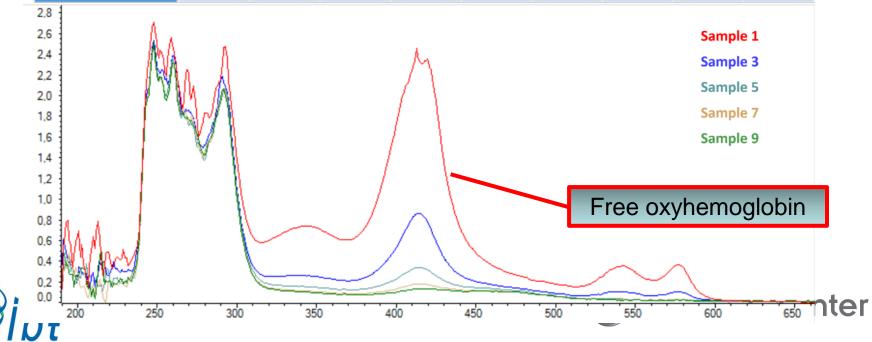
C Rat serum

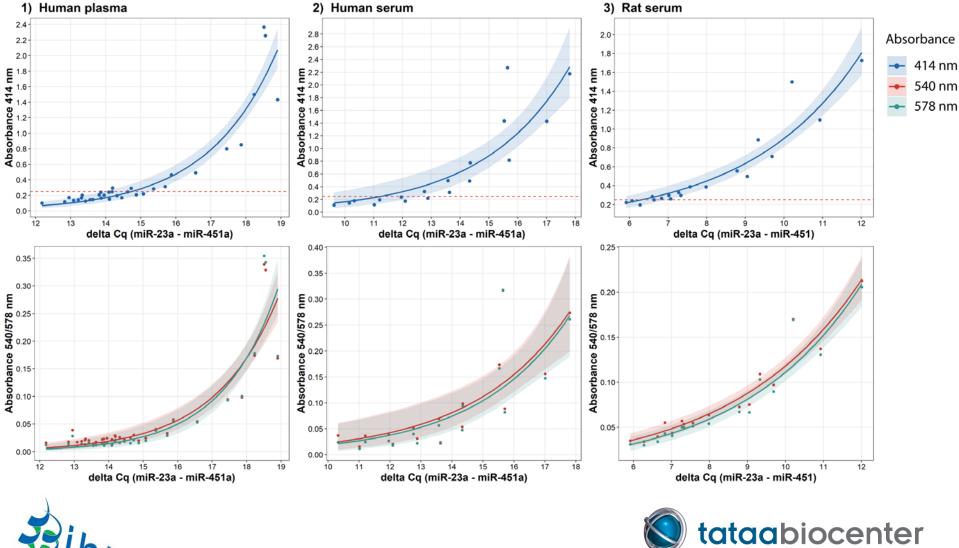
Conclusions

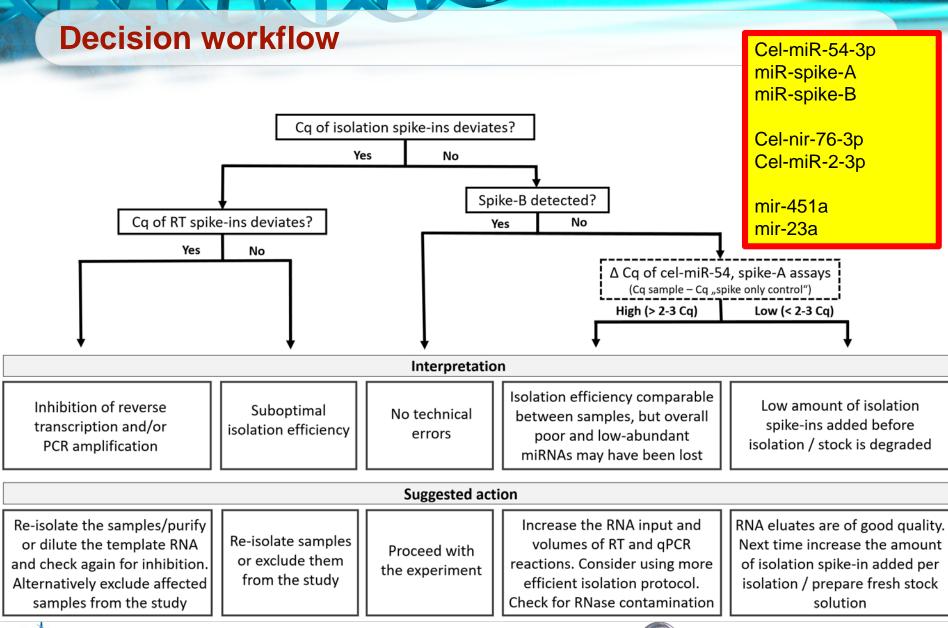

Extracting with the miRNeasy Serum/Plasma Advanced kit (Qiagen) we find:

- Relation between input sample volume and amount of cDNA is **non-linear** due to extraction issues.
- Poor yields are observed with low as well as high input volumes. Working volumes are:
 - Human plasma: 250 μl
 - Human serum: 300 500 μl
 - Rat serum: 150 μl




Effect of glycogen (human plasma)


Hemolysis


Sample	1	2	3	4	5	6	7	8	9
Erythrocyte (v/v) 1%	0.5%	0.25%	0.125%	0.063%	0.031%	0.016%	0.008%	0%
Absorb. 414nm	2.367	1.498	0.852	0.491	0.313	0.220	0.172	0.146	0.118
Absorb. 540nm	0.339	0.174	0.098	0.055	0.033	0.025	0.021	0.015	0.018
Absorb. 578 nm	0.354	0.178	0.100	0.053	0.029	0.020	0.019	0.011	0.013
ΔCq ^{(miR-23a – miR-45}	^{1a)} 18.51	18.24	17.86	16.57	15.70	15.07	14.46	13.55	12.83

mir-451a:mir-23a as indicator for hemolysis

SCIENTIFIC REPORTS

Article | OPEN | Published: 12 March 2019

Two-tailed RT-qPCR panel for quality control of circulating microRNA studies

Peter Androvic, Nataliya Romanyuk, Lucia Urdzikova-Machova, Eva Rohlova, Mikael Kubista & Lukas

Valihrach 🖂

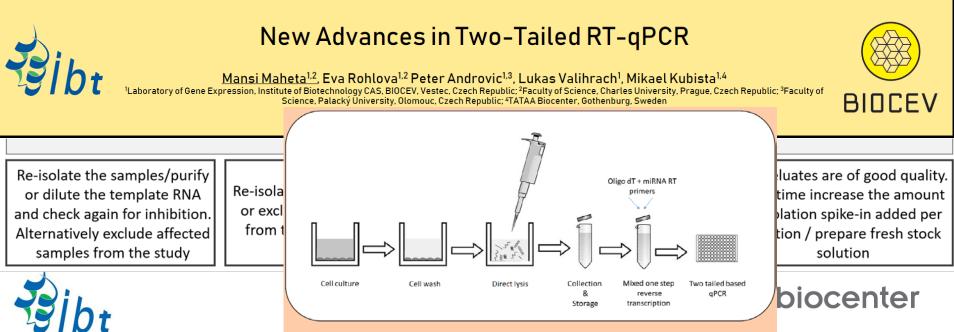


Figure 6. Schematic overview of direct lysis followed by RT-qPCR.

BioVendo	
Research and Diagnostic Products	

Search text / product / product number / lot number for SEARCH

Advanced Search

Germany change

Shopping cart (0, 0€) >

Products by **Products and** Products by Scientific New Contact Us Molecule of Downloads Blog About Us Services Products Research Topic References Interest You are here: Home > Products and Services > miRNA - RT-gPCR > Two-Tailed gPCR > Two-Tailed gPCR Products and Services Two-Tailed qPCR miRia - miRNA Immunoassays Patent-pending miRNA Two-Tailed RT-qPCR technology shows exceeding performance compared to other techniques. > miRNA – RT-qPCR The challenge detecting small microRNAs is that two conventional PCR primers do not fit the target as their combined length miRNA Isolation kits is almost twice the length of the microRNA. Older techniques have solved this by extending the microRNA using e.g., a hairpin primer, adding a poly A-tail, or adding a fragment by ligation. This, however, compromises the assay sensitivity and miRNA Diagnostics specificity, as only one of the PCR primers sense the actual microRNA sequence; the other senses the added extension. Further, these methods fail to detect microRNAs modified in the 3'-end as it interferes with the extension process. Immunoassays The technology has been developed in TATAABiocenter and bought by BioVendor. The miRNA two-Tailed RT-qPCR assays Proteins offers a superior solution. Instead of using a single binding probe, Two-tailed PCR uses two hemiprobes, which bind to different stretches of the microRNA, that are connected by a folded tether. While each hemiprobe is too short to bind the Antibodies microRNA, when both hemiprobes are complementary they bind cooperatively. Binding is exceeding specific, as a mismatch is much more profound in a short hemiprobe. The cDNA formed can then be PCR amplified using two sequence specific **Planar Arrays** primers. SYBR used for detection. High melting resolution analysis can be used for non-specific products detection. Immunohistochemistry Endotoxin Detection & Two-Tailed qPCR: Assays available Two-Tailed qPCR: Advantages Two-Tailed qPCR: Customized assays **Removal Products** Two-Tailed qPCR: Assays available Cell-Based Assays https://www.biovendor.com/

Extracellular Matrix Assays

Standard Material for absolute calibration

Material Details

SRM 2372a - Human DNA Quantitation Standard

C - Certificate M - MSDS T - Table

Add Material to Cart

- Certificate
- M Material Safety Data Sheet (MSDS)
- Related Materials: 105.8 DNA Profiling and Nucleic Acid Materials (solid forms)

Information

Details	
Description:	Human DNA Quantitation Standard
Lot:	N/A
Expiration Date:	2/13/2023
Unit Price *:	\$794.00
Unit of Issue:	3 vials x 55 µL
Status:	Now Selling See 'Additional Information' for details.
Certificate Date:	3/13/2018
MSDS Date:	2/27/2017
Technical Contact:	Erica Romsos 🖾
Additional Information:	Full details on the production, analysis, and statistical evaluation of SRM 2372a are provided in: NIST Specia Publication 260-190. Certification of Standard Reference Material® 2372a Human DNA Quantitation Standard

Publication 260-189, Certification of Standard Reference Material® 2372a Human DNA Quantitation Standard This publication is available free of charge at https://doi.org/10.6028/NIST.SP.260-189.

Specifications

Calibrated Human Genomic DNA (Secondary Standard) TATAA Biocenter

4.9/5) Based on	28 rating	
4.3/ 3/ Dasca on		

NIST Special Publication 260-189

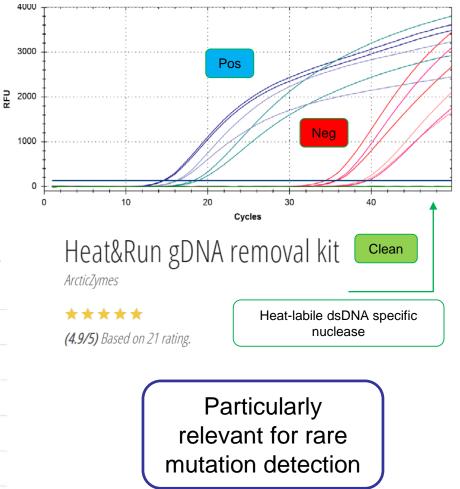
Certification of Standard Reference Material[®] 2372a **Human DNA Quantitation Standard**

Erica L. Romsos Margaret C. Kline David L. Duewer Blaza Toman Natalia Farkas

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.260-189

Ouantify the absolute amount of human genomic DNA https://webshop.tataa.com/product.html/validprime?category_id=27

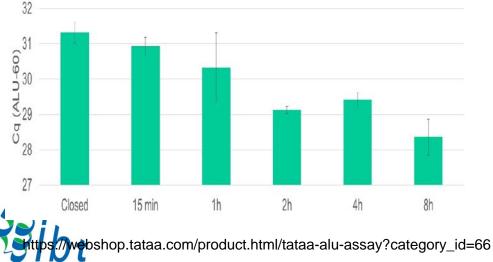
Share


Opinions (0)

ataabiocenter

Alu control assay for DNA contamination

- The Alu element is the most abundant sequence in the human genome being present in over 1 million copies (11 %).
- TATAA Alu assays are supersensitive for human genomic DNA.


Mastermixes from three suppliers showing significant contamination of human gDNA when tested with Alu-assays.

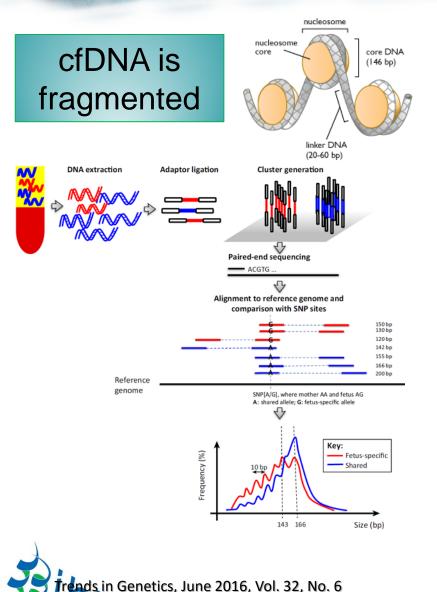
tataabiocenter

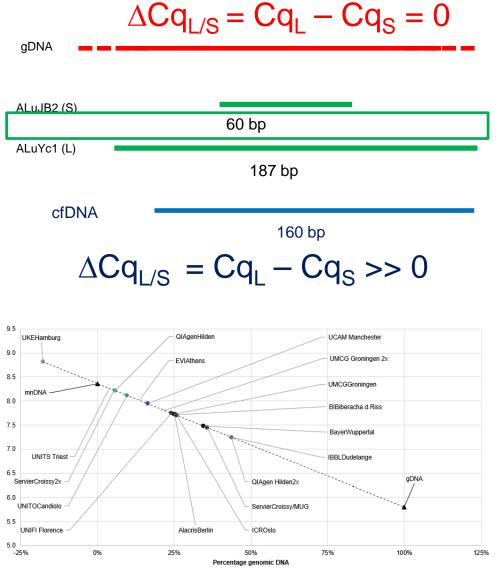
Eppendorf tube left open in laboratory, being contaminated by DNA in the air

www.cancer-id.eu

THE PROJECT PARTNERS NEWS CAREERS

Cancer treatment and monitoring through identification of circulating tumor cells and tumor related nucleic acids in blood



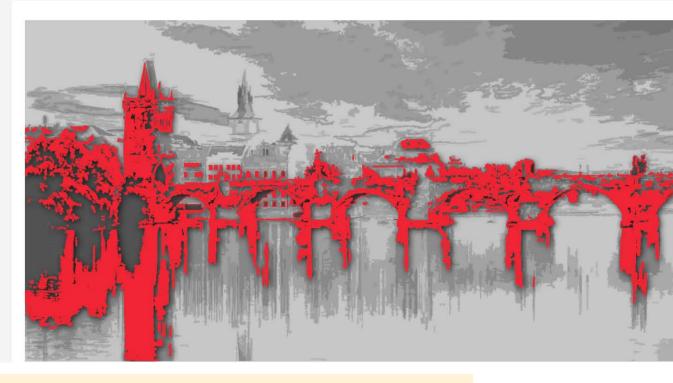

The Project

Partners

News

∆Amp Alu control assays for cellular DNA contamination

May 26 - 29, 2020


BIOCEV Vestec Prague Czech Republic

PROGRAM ~ SPEAKERS REGISTRATION PRACTICAL INFO ~ SPONSORSHIP ABSTRACT ~

Deadlines

Early registration:24.1.2020Oral pr. submission:7.2.2020Poster submission:6.3.2020Registration deadline:31.3.2020

REGISTRATION ABSTRACT

http://precisiondiagnostics.eu/

A SPIDIA Conference

