

Preanalytical Considerations and Workflow Solutions for Liquid Biopsies

Specimen, Standards & Technologies

European Biobank Week – Industry Workshop - Live in Your Living Room 18 November 2020

Dr. Tomasz Krenz

Who we are

PreAnalytiX[®], a joint venture between **BD** and **QIAGEN**, develops, manufactures and sells integrated and standardized systems for sample collection, stabilization and purification of high-quality RNA, microRNA, ccfDNA, and DNA from human blood, bone marrow, or tissue specimens.

Our mission

To enable and improve the diagnosis, treatment and monitoring of disease by providing clinicians and researchers with preanalytical systems that yield superior quality samples for molecular diagnostic testing.

Legal Disclaimer

- The PAXgene® Blood RNA System is available for IVD use only when the PAXgene Blood RNA Tube (762165) is used in combination with the PAXgene Blood RNA Kit (762164 or 762174).
- The PAXgene® Blood ccfDNA Tube (RUO) is for Research Use Only in the U.S. The PAXgene Blood ccfDNA Tube (CE-IVD) is available in some parts of the world outside the U.S.
- The CE-marked PAXgene Blood ccfDNA Tube for in vitro diagnostic use is available in the following countries: AT, AU, BE, BG, CA, HR, CY, CZ, DK, EE, FI, FR, DE, GR, HU, IS, IN, ID, IE, IT, JP, KR, LV, LI, LT, LU, MT, NL, NZ, NO, PL, PT, RO, RU, SG, SK, SI, ES, SE, CH, TH, UK, VN
- For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN or PreAnalytiX kit handbook or user manual. QIAGEN or PreAnalytiX kit handbooks and user manuals are available at www.qiagen.com or www.preanalytix.com or can be requested from QIAGEN Technical Services, PreAnalytiX Technical Services or your local distributor.

Agenda

- Need for pre-analytical workflow standardization to reduce diagnostic errors
- Pre-analytical factors that influence the outcome of ccfDNA analysis
- International initiatives and requirements to standardize pre-analytical workflows
- Liquid biopsy preservation and workflow solutions

Agenda

- Need for pre-analytical workflow standardization to reduce diagnostic errors
- Pre-analytical factors that influence the outcome of ccfDNA analysis
- International initiatives and requirements to standardize pre-analytical workflows
- Liquid biopsy preservation and workflow solutions

Demand for Improvements and Workflow Standardization

150,000 papers documenting thousands of claimed biomarkers, but fewer than 100 have been validated for routine clinical practice

Bring on the biomarkers, George Poste, Nature 2011

Diagnostic errors cause about 10% of all patient deaths and about 17% of adverse events

Institute of Medicine (IOM) Report Sept. 2015

The pre-analytical phase accounts for 46% to 68% of errors observed during the total testing process

Medical Laboratory Observer, May 2014

Unnecessary expenditure caused by pre-analytical errors in a typical U.S. hospital
 (~ 650 beds) of ~ \$1.2 million per year

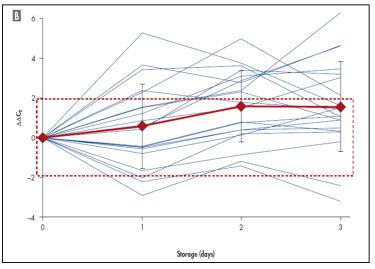
Green SF. Clin Biochem. 2013

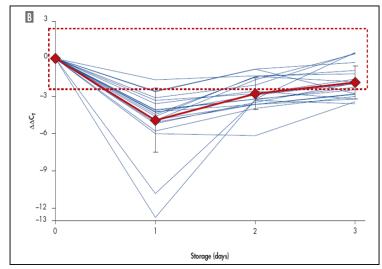
Irreproducible preclinical research exceeds 50%, US \$28B / year spent on preclinical research that is not reproducible - in the US alone

Freedman LP, Cockburn IM, Simcoe TS (2015) PLoS Biol 13(6): e1002165.doi:10.1371/journal.pbio.1002165

An Analytical Test Result is the Result of an Entire Workflow

Specifying, developing and verifying preanalytical workflows has to be part of the analytical test development




European Conference. Standards: Your Innovation Bridge. Brussels (2014). SPIDIA Booth.

Blood RNA Profiling - Challenges with Individual Sample Kinetics

Transcription degradation and induction in human EDTA blood stored at room temperature

IL-1b mRNA

Guenther K. et al. AMP Poster (2005)

c-fos mRNA

Guenther K. et al. CLI 5, 26-28 (2008)

Deficiencies in Routine Healthcare and Research

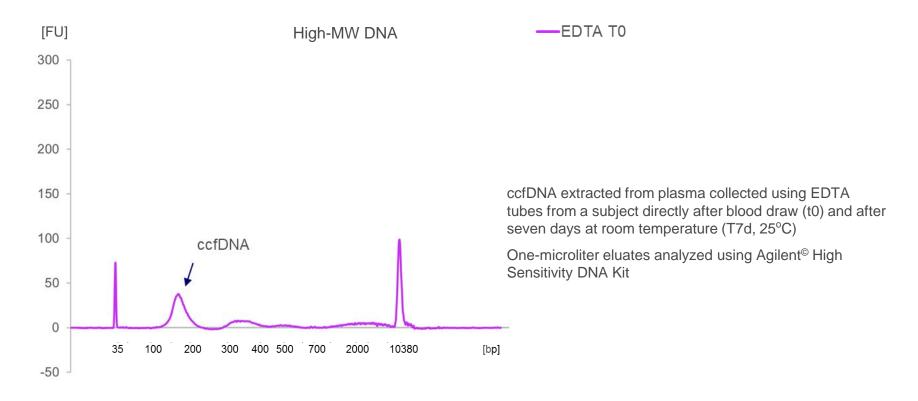
Agenda

- Need for pre-analytical workflow standardization to reduce diagnostic errors
- Pre-analytical factors that influence the outcome of ccfDNA analysis
- International initiatives and requirements to standardize pre-analytical workflows
- Liquid biopsy preservation and workflow solutions

Pre-analytical Factors that Influence the Outcome of ccfDNA Analysis

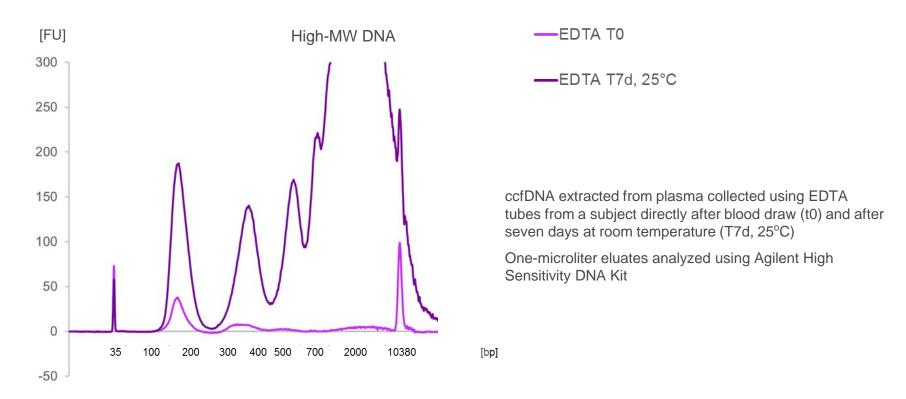
Preanalytical step affecting ccfDNA	Challenge	Recommendation			
Blood collection tube	Release of genomic DNA from leukocytes;	Use of a dedicated ccfDNA stabilization tube Use of EDTA tube, in case no dedicated ccfDNA stabilization tube is available			

"the entire workflow, including specimen/sample storage and transport conditions, and its impact on the stability of biomolecules intended to be examined shall be verified and validated"

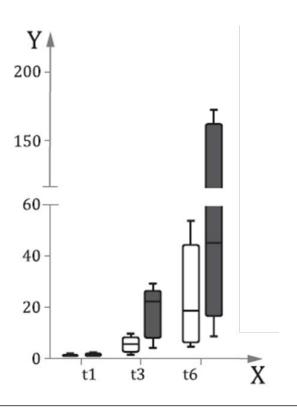

ISO 20186-3:2019

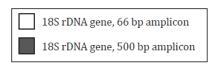
Molecular in vitro diagnostic examinations — Specifications for pre- examination processes for venous whole blood — Part 3: Isolated circulating cell free DNA from plasma.

Pre-analytical Factor - Blood Collection Type Impact on Size Distribution


Apoptosis of white blood cells leads to release of high molecular weight DNA

Pre-analytical Factor - Blood Collection Type Impact on Size Distribution


Apoptosis of white blood cells leads to release of high molecular weight DNA



Pre-analytical Factor – Blood Collection Impact on Yield

Apoptosis of white blood cells leads to increased yield and dilution of the target ccfDNA

X whole blood storage duration at room temperature before plasma generation (t1,3,6: 1, 3, and 6 days)

Y ratio of 18S rDNA copy numbers determined in plasma after indicated blood storage durations versus immediately after blood collection (t0)

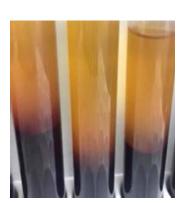
ISO 20186-3:2019

Molecular in vitro diagnostic examinations — Specifications for preexamination processes for venous whole blood

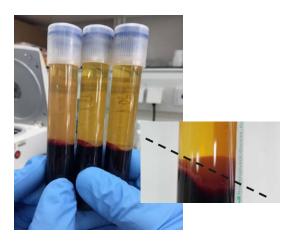
— Part 3: Isolated circulating cell free DNA from plasma. Annex A.

Pre-analytical Factor – Plasma Processing Protocol

Follow manufacturer's centrifugation protocols to avoid gDNA carryover or reduced volume of separated plasma

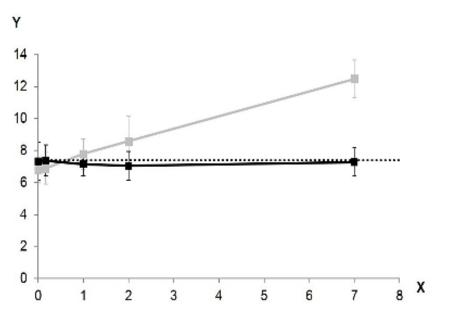

Manufacturer recommendation for PAXgene Blood ccfDNA Tube*

- 1st Spin 15 min at 1600-3000 x g
- 2nd Spin 10 min at 1600-3000 x g



Best outcome: Maximum recovery of clear plasma with compact level interface

Reduced centrifugation time: 5 min at 1600 x g


Maximum brake:

^{*}For Research Use Only in the U.S. The PAXgene Blood ccfDNA Tube (CE-IVD) is available in some parts of the world outside the U.S.

Post Blood Collection ccfDNA Profile Changes - Impact on EGFR Test

- X venous whole blood storage duration (in days) before plasma preparation
- Y ΔCT = CT (mutant) CT (wildtype control)
- EDTA Blood
- Stabilized Blood
- Threshold (given by the examination provider)

The average of 7 donors is shown

ISO 20186-3:2019

Molecular in vitro diagnostic examinations — Specifications for preexamination processes for venous whole blood

— Part 3: Isolated circulating cell free DNA from plasma. Annex A.

Blood collected in EDTA and PAXgene Blood ccfDNA Tubes*

Spiked with restriction enzyme treated EGFR DNA with mutation T790M, equivalent to 200 copies ccfDNA tested with the commercially available EGFR Plasma PCR Kit (RUO)

^{*}For Research Use Only in the U.S. The PAXgene Blood ccfDNA Tube (CE-IVD) is available in some parts of the world outside the U.S.

Agenda

- Need for pre-analytical workflow standardization to reduce diagnostic errors
- Pre-analytical factors that influence the outcome of ccfDNA analysis
- International initiatives and requirements to standardize pre-analytical workflows
- Liquid biopsy preservation and workflow solutions

SPIDIA: New Technologies and Standards for Pre-analytical Workflows

SPIDIA – FP7 (2008 – 2013)

- ⇒ 16 Partners
- New technologies for sample collection, stabilization, processing, transport, storage (Blood, Tissues)
- 9 EU CEN Standards

SPIDIA4P – H2020 (2017 – 2020)

- ⇒ 19 Partners
- ⇒ 14 associated consortia & stakeholder organizations
- 13 additional new CEN & ISO Standards
- EQAs
- European implementation

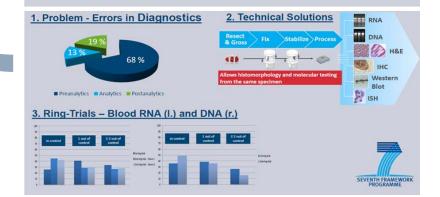
www.spidia.eu New Website. Subscribe to the newsletter!

The SPIDIA project has received funding under the Seventh Research Framework Program of the European Union, FP7-HEALTH-2007-1.2.5, under grant agreement no. 222916. The SPIDIA4P project receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 733112.

SPIDIA's Road to Standardization

Vienna Agreement 1991

- 2019: 8 ISO/International Standards
- 2014: 8 new projects for ISO Standards approved in ISO/TC 212 "Clinical laboratory testing and in vitro diagnostic test systems"


- 2015: 9 CEN Technical Specifications published
- 2013: 9 new projects approved in CEN/TC 140 "In vitro diagnostic medical devices"
- 2010: Start of standardization work

European Conference. Standards: Your Innovation Bridge. Brussels (2014). SPIDIA Booth.

22 CEN & ISO Standard Documents and EQAs by 2021

INTERNATIONAL STANDARD ISO 20186-3

First edition

Molecular in vitro diagnostic examinations — Specifications for pre-examination processes for venous whole blood —

Part 3: Isolated circulating cell free DNA from plasma

Analyses de diagnostic moléculaire in vitro — Spécifications relatives aux processus préanalytiques pour le sang total veineux — Partie 3: ADN libre circulant extrait du plasma

> Reference number ISO 20186-3:2019(E)

> > o ISO 2019

Molecular in-vitro diagnostic examinations - Specifications for preexamination processes for

- Blood <u>Cellular RNA</u>, <u>gDNA</u>, <u>ccfDNA</u>, <u>ccfRNA</u>
- Blood Exosomes, ccfRNA
- Circulating Tumor Cells DNA, RNA, staining
- Tissue (FFPE) <u>DNA, RNA, Proteins</u>
- Tissue (Frozen) RNA, Proteins, DNA
- Tissue (FFPE) staining
- Fine Needle Aspirates DNA, RNA, Proteins
- Saliva DNA
- Urine & Body Fluids cfDNA
- Microbiome Stool, Saliva etc.

published CEN

published ISO

in development

https://www.spidia.eu/

New In Vitro Diagnostic Regulations 2017 (IVDR)

- New European In Vitro Diagnostic Regulation in force since May 2017
- Pre-analytical workflow parameters in several sections
 - 6. PRODUCT VERIFICATION AND VALIDATION (Annex II)
 - 6.1. Information on analytical performance of the device
 - 6.1.1. Specimen type

This Section shall describe the different specimen types that can be analysed, including their stability such as storage, where applicable specimen transport conditions and, with a view to time-critical analysis methods, information on the timeframe between taking the specimen and its analysis and storage conditions such as duration, temperature limits and freeze/thaw cycles

Implementation of Preanalytical Standards

PreAnalytiX, a QIAGEN/BD Company, and SPIDIA4P partner

Pre-examination processes for venous whole blood, intended for isolation of cell free DNA from plasma SOP-3000-xxx Rev 01

1 Purpose

The purpose of this SOP is the standardization of the entire vonflow from venous whole blood collection in blood collection tubes to circulating cell free CVP extraction in concordance to ISO 20186-3:2019(E).

2 Scope

This SOP describes whole blood collection handling, storage, processing and documentation prior to examination procedures of circular one of the DNA (ccfDNA). Description of plasma pooling of samples, storage and hasdom brior to extraction of ccfDNA is also included, however this is not related to any technical processing of ccfDNA or ISO/IS).

This SOP applies to the departments DSPS (Diagnostic Sample Preparation and Stabilization) and PreAnalytix of QIAGEN GmbH.

3 Authority / Responsibility

Department / Function	Responsibility					
DSPS & PAX	Training, Application and Updates of SOP					
Quality Assurance	Supervision					

4 Equipment & Materials

Blood collection

EDTA BCT e.g.

 BD Vacutainer K2E (EDTA)
 Ref. 383095

 Greiner BioOne Vacuette K2-/K3-EDTA
 Ref. 454382

 Sarstedt S-Monovette K2-/K3-EDTA
 Ref. 02.1086.001

 Terumo Venosafe K2-/K3-EDTA
 Ref. VT-109SDK

PAXgene Blood cofDNA Tube (CE-IVD)

PAXgene Blood cofDNA Tube (RUO)

Ref. 768165 Ref. 768115

Certification according to ISO 13485

Company Quality Manual: Process Landscape

Global Process SOPs incl. legal requirements Technical SOPs for pre-analytical workflows based on ISO & CEN standards

ISO 20186-3 - Pre-examination Processes for Blood ccfDNA

Cor	itent	S		Page						
Fore	word			i						
Intro	ductio	n								
1	Scop	e								
2	Norn	native re	ferences							
3	Tern	is and de	efinitions							
4	General consideration									
	Outside the laboratory									
	5.1	Specimen collection								
		5.1.1	Information about the specimen donor/patient							
		5.1.2		(
		5.1.3	Venous whole blood collection from the donor/patient and stabilization procedures							
		5.1.4	Information about the specimen and storage requirements at the blood collection facility							
	5.2	Transp	ransport requirements							
6	Insid	le the lal	poratory	8						
	6.1	Specin	nen reception							
	6.2		e requirements for blood specimens							
	6.3		a preparation							
	6.4		age requirements for plasma samples							
	6.5 Isolation of the ccfDNA.									
		6.5.1		10						
		6.5.2		10						
		6.5.3	Using blood collection tubes without stabilizers							
	6.6	Quanti	ty and quality assessment of isolated ccfDNA	1						
	6.7		e of isolated ccfDNA							
			General							
		6.7.2		1						
		6.7.3	ccfDNA isolated with the laboratory's own protocols	12						
Anne			e) Impact of pre-examination process steps on circulating cell free DNA nous whole blood plasma							
D:1.1:	•									
BIBII	ograpi	ıy		10						

ISO 20186-3:2019 - Molecular in vitro diagnostic examinations — Specifications for pre-examination processes for venous whole blood — Part 3: Isolated circulating cell free DNA from plasma

Product Development According to ISO Standards

Blood donation date	07.01.2020				
Experiment	MRa0053 Feasibility Precision02				
Standard	According to ISO 20186-3 Isolated circulating cell free DNA from plasma				

Donor Information, Blood Collection and Transport into the Laboratory

Technical SOP: pre-examination process for ccfDNA based on ISO standard

Worksheet: Outside the laboratory

Donor ID	Type and number (#) of blood tubes collected	Blood sample ID (labeling)	Time Blood collection [hh:mm]	Gender	Health status and relevant lifestyle factors of the blood donor	Venipuncture technique	Phlebotomist - Name	Tampering with and/or additions to primary sample	storage conditions	Blood sample storage time until transport into the lab. [min]	Blood collection tubes transport conditions
MRa0053 D1	10ml BD-EDTA spray dried (1) 10ml PAXgene Blood ccfDNA Tube (9)	MRa0053 D1-E1 D1- P1-9	8:50	unknown	healthy	BD blood collection set, 23G	BAD - N. Mustermann	Underfilled 50%	horizontal, room temp.	< 60min	horizontal in bags
MRa0053 D2	10ml BD-EDTA spray dried (1) 10ml PAXgene Blood ccfDNA Tube (9)	MRa0053 D1-E1 D1- P1-9	9:00	male	healthy	Sartstedt blood collection set, 21 G	BAD - N. Mustermann	Incomplete mixing 2x	standing upright in tray, room temp.	< 60min	standing upright in tray
MRa0053 D3	10ml Streck cfDNA (10)	MRa0053 D3-T1 bis T10	9:10	female.	healthy	Sartstedt blood collection set, 23 G	BAD - N. Mustermann	According IFU			
			3/10								
		rexa	uble								
		Ó									

Agenda

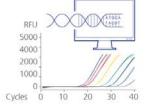

- Need for pre-analytical workflow standardization to reduce diagnostic errors
- Pre-analytical factors that influence the outcome of ccfDNA analysis
- International initiatives and requirements to standardize pre-analytical workflows
- Liquid biopsy preservation and workflow solutions

Pre-analytical Steps: Part of a Whole Diagnostic Test Workflow

Sample Collection

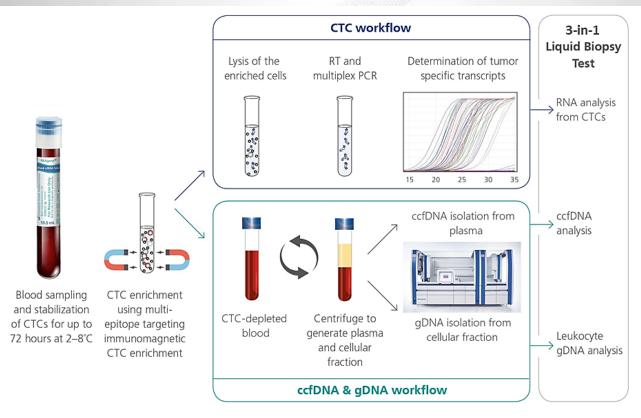
Preanalytical Workflow

Insight



QIAsymphony PAXgene Blood ccfDNA Kit

Blood collection and stabilization


Transport, storage, plasma separation

ccfDNA

Real-time PCR, NGS, other Data analysis

Multimodal Analysis: Extraction and Analysis of CTC RNA, ccfDNA and gDNA from a Single Blood Sample*†

^{*}The workflow presented is For Research Use Only. Not for use in diagnostic procedures.

Babayan et al. [abstract]. Proceedings: AACR Advances in Liquid Biopsies 2020; January 13-16, 2020; Miami, FL.

[†]This research was conducted using the PAXgene Blood ccfDNA Tube (RUO) which is available in the United States and other parts of the world outside of Europe.

Thank you for your attention

Questions?

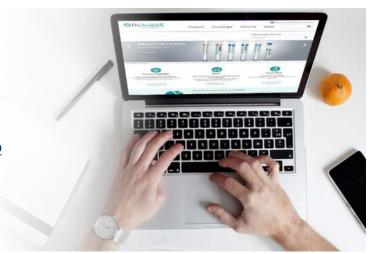
Q&A session

BD

Support http://www.bd.com/support/contact/international.asp

Website www.bd.com

QIAGEN


Ordering www.qiagen.com/contact

Technical Support support.qiagen.com

Website www.qiagen.com

PreAnalytiX

Website www.preanalytix.com

Trademarks are the property of their respective owners.

© 2020 PreAnalytiX GmbH. PreAnalytiX, the PreAnalytiX Logo and all other trademarks are property of PreAnalytiX GmbH, Hombrechtikon, CH