

Preanalytical Considerations about Circulating Tumor DNA Specimen Improvements, Standards & Technologies

LIQUID BIOPSY SUMMIT 20 – 21 February 2020 Lisbon, Portugal

Dr. Daniel Grölz

- Need for pre-analytical workflow standardization to reduce diagnostic errors
- Pre-analytical factors that influence the outcome of ccfDNA analysis
- International initiatives and requirements to standardize pre-analytical workflows
- Liquid biopsy preservation and workflow solutions

- Need for pre-analytical workflow standardization to reduce diagnostic errors
- Pre-analytical factors that influence the outcome of ccfDNA analysis
- International initiatives and requirements to standardize pre-analytical workflows
- Liquid biopsy preservation and workflow solutions

Demand for Improvements and Workflow Standardization

 150,000 papers documenting thousands of claimed biomarkers, but fewer than 100 have been validated for routine clinical practice

Bring on the biomarkers, George Poste, Nature 2011

Diagnostic errors cause about 10% of all patient deaths and about 17% of adverse events

Institute of Medicine (IOM) Report Sept. 2015

 The pre-analytical phase accounts for 46% to 68% of errors observed during the total testing process

Medical Laboratory Observer, May 2014

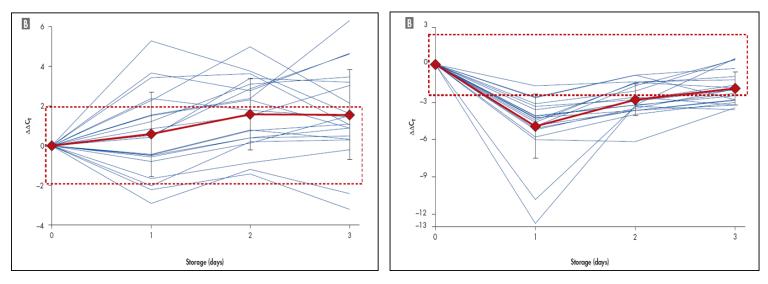
 Unnecessary expenditure caused by pre-analytical errors in a typical U.S. hospital (~ 650 beds) of ~ \$1.2 million per year

Green SF. Clin Biochem. 2013

 Irreproducible preclinical research exceeds 50%, US \$28B / year spent on preclinical research that is not reproducible - in the US
 Freedman LP, Cockburn IM, Simcoe TS (2015) PLoS Biol 13(6): e1002165.doi:10.1371/journal.pbio.1002165

An Analytical Test Result is the Result of an Entire Workflow

Specifying, developing and verifying preanalytical workflows has to be part of the analytical test development


European Conference. Standards: Your Innovation Bridge. Brussels (2014). SPIDIA Booth.

Provided by courtesy of SPIDIA

Blood RNA Profiling - Challenges with Individual Sample Kinetics

Transcription induction and degradation in human EDTA Blood stored at Room Temperature

IL-1b mRNA

Guenther K. et al. AMP Poster (2005)

c-fos mRNA

Guenther K. et al. CLI 5, 26-28 (2008)

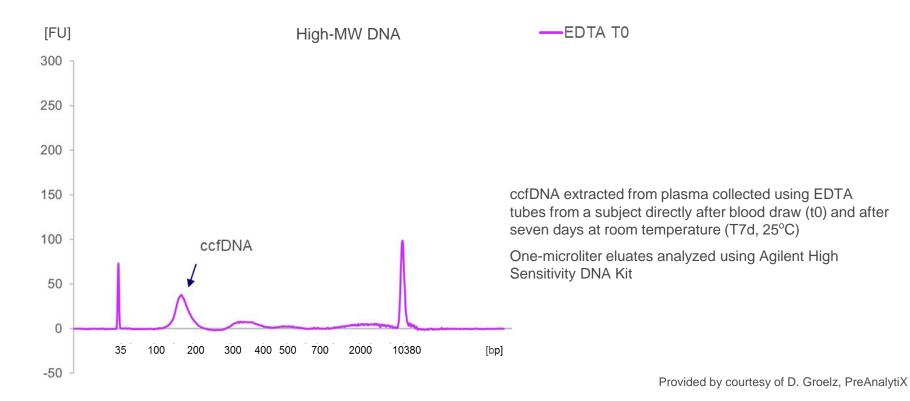
- Need for pre-analytical workflow standardization to reduce diagnostic errors
- Pre-analytical factors that influence the outcome of ccfDNA analysis
- International initiatives and requirements to standardize pre-analytical workflows
- Liquid biopsy preservation and workflow solutions

Pre-analytical Factors that Influence the Outcome of ccfDNA Analysis

Preanalytical step affecting ccfDNA	Challenge	Recommendation
Blood collection tube	Release of genomic DNA from leukocytes; PCR inhibition	Use of a dedicated ccfDNA stabilization tube Use of EDTA tube, in case no dedicated ccfDNA stabilization tube is available
Time between blood collection and plasma processing	Release of genomic DNA from leukocytes	Must be validated in combination with downstream application In case of unstabilized EDTA blood within 2 to 6 hours
Plasma or serum	Release of genomic DNA from leukocytes	Use of plasma
Plasma processing protocol	Incomplete separation of cellular fraction Mechanical lysis of blood cells	For EDTA blood use double centrifugation protocol with low and high speed centrifugation Follow recommendations of ccfDNA tube manufacturer
Plasma storage	Reduction of yield Increased fragmentation	Do not store plasma at 4°C for longer than 24 hours Freeze at -20°C or -80°C Avoid repeated freezing/ thawing cycles
DNA purification method	Suboptimal compatibility with blood collection tube Low yield	Validation of DNA purification method Follow recommendations of ccfDNA tube manufacturer
DNA quantification	Over-quantification due to absorption of impurities in spectrophotometry	Validation of QC-methods; use of qPCR based methods
DNA storage	Reduction of yield Increased fragmentation	Store ccfDNA at -20°C or below Avoid repeated freezing and thawing

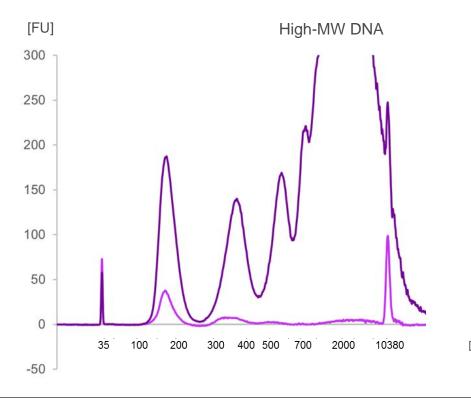
Grölz et al. Curr Pathobiol Rep. 2018;6(4):275-286

Pre-analytical Factors that Influence the Outcome of ccfDNA Analysis



Preanalytical step affecting ccfDNA	Challenge	Recommendation
Blood collection tube	Release of genomic DNA from leukocytes; PCR inhibition	Use of a dedicated ccfDNA stabilization tube Use of EDTA tube, in case no dedicated ccfDNA stabilization tube is available
Fime between blood collection and blasma processing	Release of genomic DNA from leukocytes	Must be validated in combination with downstream application In case of unstabilized EDTA blood within 2 to 6 hours
Plasma or serum	Release of genomic DNA from leukocytes	Use of plasma
verified and valid	the stability of biomolecules inter ated" stic examinations — Specifications for pre- exam	
DNA Part 3: Isolated circula	ating cell free DNA from plasma.	Follow recommendations of cctDNA tube manufacturer
	Low yield	Follow recommendations of CCIDINA tube manufacturer
DNA quantification	Over-quantification due to absorption of impurities in spectrophotometry	Validation of QC-methods; use of qPCR based methods
DNA storage	Reduction of yield Increased fragmentation	Store ccfDNA at -20°C or below Avoid repeated freezing and thawing
		Crätz et al. Curr Dethabial Den. 2019/6(1):27

Grölz et al. Curr Pathobiol Rep. 2018;6(4):275-286

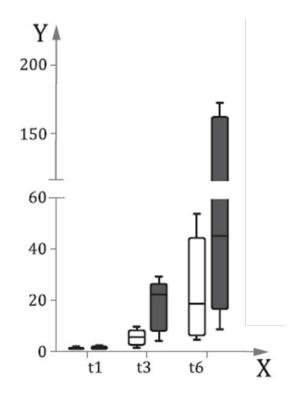


Apoptosis of white blood cells leads to release of high molecular weight DNA

Apoptosis of white blood cells leads to release of high molecular weight DNA

-EDTA T7d, 25°C

ccfDNA extracted from plasma collected using EDTA tubes from a subject directly after blood draw (t0) and after seven days at room temperature (T7d, 25°C)


One-microliter eluates analyzed using Agilent High Sensitivity DNA Kit


[b**p]**

Pre-analytical Factor – Blood Collection Impact on Yield

Apoptosis of white blood cells leads to increased yield and dilution of the target ccfDNA

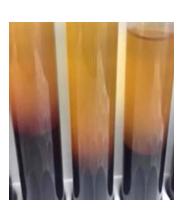
X whole blood storage duration at room temperature before plasma generation (t1,3,6: 1, 3, and 6 days)

Y ratio of 18S rDNA copy numbers determined in plasma after indicated blood storage durations versus immediately after blood collection (t0)

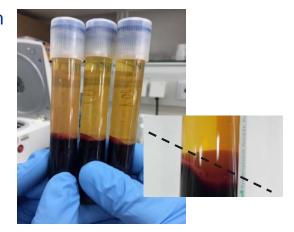
ISO 20186-3:2019

Molecular in vitro diagnostic examinations — Specifications for preexamination processes for venous whole blood — Part 3: Isolated circulating cell free DNA from plasma. Annex A.

Pre-analytical Factor – Plasma Processing Protocol

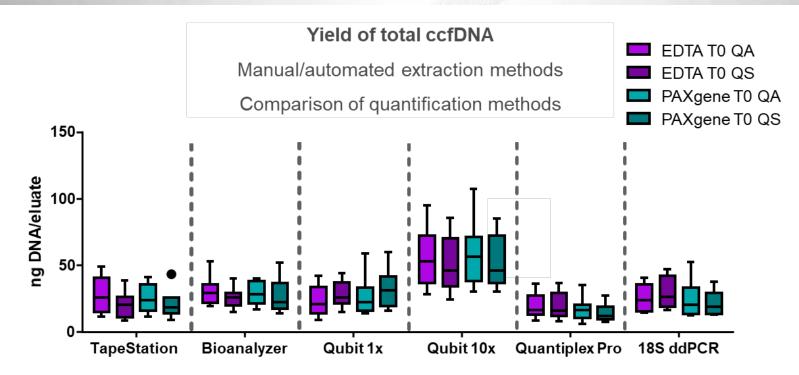

Follow manufacturer's centrifugation protocols to avoid gDNA carryover or reduced volume of separated plasma

Manufacturer recommendation for PAXgene Blood ccfDNA Tube


- 1st Spin 15 min at 1600-3000 x g
- 2nd Spin 10 min at 1600-3000 x g
- Medium brake

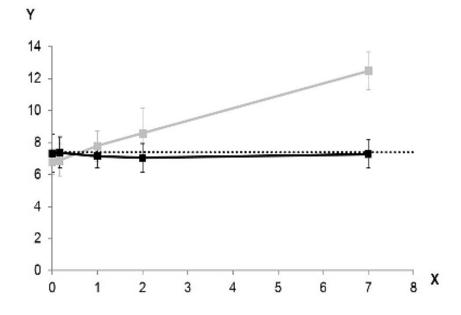
Best outcome: Maximum recovery of clear plasma with compact level interface

Reduced centrifugation time: 5 min 1600 x g



Maximum brake:

Pre-analytical Factor - DNA Quantification



Blood from 8 donors collected in EDTA and PAXgene Blood ccfDNA Tubes, manual (QIAamp cNA kit) and automated ccfDNA (QIAsymphony) isolation;

DNA quantification with Cell-free DNA ScreenTape Assay (4200 TapeStation System), High Sensitivity DNA Analysis Assay (Bioanalyzer 2100), Qubit® 1x (premixed) and 10x (dilution needed) dsDNA HS Assay (Qubit 2.0), Investigator Quantiplex® Pro Assay (QIAGEN Rotor-Gene® Q), 18S rDNA 66 bp (inhouse assay on QX200 Droplet Digital[™] PCR).

Post Blood Collection ccfDNA Profile Changes - Impact on EGFR Test

- X venous whole blood storage duration (in days) before plasma preparation
- Y ΔCT = CT (mutant) CT (wildtype control)

EDTA Blood

Stabilized Blood

.... Threshold (given by the examination provider)

The average of 7 donors is shown

ISO 20186-3:2019

Molecular in vitro diagnostic examinations — Specifications for preexamination processes for venous whole blood — Part 3: Isolated circulating cell free DNA from plasma. Annex A.

Blood collected in EDTA and PAXgene Blood ccfDNA tubes Spiked with restriction enzyme treated EGFR DNA with mutation T790M, equivalent to 200 copies ccfDNA tested with the commercially available EGFR Plasma PCR Kit (RUO)

- Need for pre-analytical workflow standardization to reduce diagnostic errors
- Pre-analytical factors that influence the outcome of ccfDNA analysis
- International initiatives and requirements to standardize pre-analytical workflows
- Liquid biopsy preservation and workflow solutions

SPIDIA: New Technologies and Standards for Pre-analytical Workflows

SPIDIA – FP7 (2008 – 2013)

16 Partners

SPIDIA

9 EU CEN Standards 60

SPIDIA4P – H2020 (2017 – 2020)

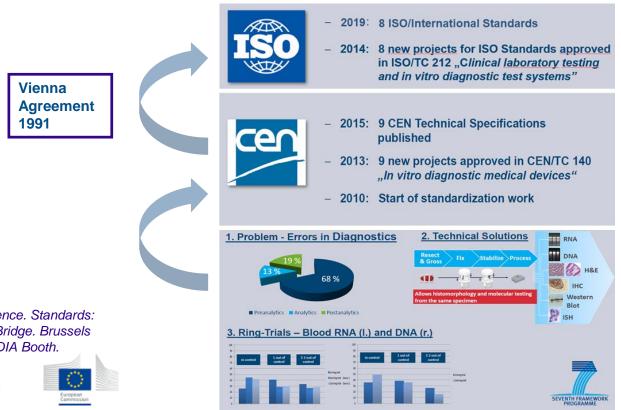
- **19 Partners**
- 14 associated consortia & stakeholder organizations
- 13 additional new CEN & ISO Standards 60
- EQAs 60

17

European implementation

New Website. Subscribe the Newsletter! www.spidia.eu

The SPIDIA project has received funding under the Seventh Research Framework Program of the European Union, FP7-HEALTH-2007-1.2.5, under grant agreement no. 222916. The SPIDIA4P project receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 733112.



SPIDIA's Road to Standardization

Provided by courtesy of SPIDIA

European Conference. Standards: Your Innovation Bridge. Brussels (2014). SPIDIA Booth.

CEN


- Recognized by the EU and the European Free Trade Association (EFTA) as being responsible for developing standards at European level
- Development of a European Standard (EN) or International Standard (ISO) is governed by the principles of consensus, openness, transparency, national commitment and technical coherence
- One European Standard replaces 34 national standards

• **CEN/TC 140** (Committee for in vitro diagnostic medical devices)

- 34 EU countries National Standards Bodies (NSB)
- Stakeholders in liaison & cooperations
 - European Commission (EC), ESP (European Society of Pathology), EFLM (European Federation of Laboratory Medicine), IFCC (Int. Federation of Clinical Chemistry and Laboratory Medicine), JISC (Japanese Industrial Standards Committee), MedTech (Alliance of European medical technology industry associations, founded by EDMA), EPBS (European Association for Professions in Biomedical Science), BBMRI-ERIC (Biobanking and BioMolecular resources Research Infrastructure - European Research Infrastructure Consortium), in progress, ISO/TC 212 (Clinical laboratory testing and in vitro diagnostic test systems), ISO/TC 276 Biotechnology

9 CEN Technical Specifications Released in Europe in 2015 / 16

- Molecular in-vitro diagnostic examinations Specifications for pre-examination processes for
 - Blood Cellular RNA
 - Blood Genomic DNA
 - Blood Circulating cell free DNA
 - FFPE tissue DNA
 - FFPE tissue RNA
 - FFPE tissue Proteins
 - Frozen tissue RNA
 - Frozen tissue Proteins
 - Metabolomics in urine, serum and plasma

22 CEN & ISO Standard Documents and EQAs by 2021

INTERNATIONAL STANDARD	ISO 20186-3	ex
	First edition 2019-09	
Molecular in vitro diagnos examinations — Specificat pre-examination processe whole blood —	tions for	
Part 3: Isolated circulating cell fr from plasma	ee DNA	
Analyses de diagnostic moléculaire in vitro — S aux processus préanalytiques pour le sang tota Partie 3: ADN libre circulant extrait du plasma	īpécifications relatives l veineux —	
	Reference number ISO 20186-3:2019(E)	
ISO	© ISO 2019	

Provided by courtesy of SPIDIA

Molecular in-vitro diagnostic examinations - Specifications for preexamination processes for

- Blood <u>Cellular RNA, gDNA, ccfDNA</u>, ccfRNA
- Blood Exosomes, ccfRNA
- Oriculating Tumor Cells DNA, RNA, staining
- Tissue (FFPE) <u>DNA, RNA, Proteins</u>
- Tissue (Frozen) <u>RNA</u>, Proteins, **DNA**
- Tissue (FFPE) staining
- Fine Needle Aspirates DNA, RNA, Proteins
- Saliva DNA
- Urine & Body Fluids cfDNA
- Microbiome Stool, Saliva etc.

published CEN

published ISO

in development

https://www.spidia.eu/

Preanalytical Considerations about Circulating Tumor DNA

New In Vitro Diagnostic Regulations 2017 (IVDR)

- New European In Vitro Diagnostic Regulation in force since May 2017
- Pre-analytical workflow parameters in several sections
 - 6. PRODUCT VERIFICATION AND VALIDATION (Annex II)
 - 6.1. Information on analytical performance of the device
 - 6.1.1. Specimen type

This Section shall describe the different specimen types that can be analysed, including their <u>stability</u> such as <u>storage</u>, where applicable specimen <u>transport conditions</u> and, with a view to time-critical analysis methods, information on the timeframe between taking the specimen and its analysis and storage conditions such as duration, temperature limits and freeze/thaw cycles

Implementation of Preanalytical Standards

PreAnalytiX a QIAGEN/BD Company and SPIDIA4P partner

Pre-examination processes for venous whole blood, intended for isolation of cell free DNA from plasma SOP-3000-xxx Rev.01

1 Purpose

The purpose of this SOP is the standardization of the entire to Mow from venous whole blood collection in blood collection tubes to circulating cell free to extraction in concordance to ISO 20186-3.2018(E).

2 Scope

This SOP describes whole blood collection handling, storage, processing and documentation prior to examination procedures of circ/pang cell free DNA (ccfDNA). Description of plasma pooling of samples, storage and handlon prior to extraction of ccfDNA is also included, however this is not related to any technical foreintation (e.g. CEN/TS or ISO/IS).

This SOP applies to the departments DSPS (Diagnostic Sample Preparation and Stabilization) and PreAnalytix of QIAGEN GmbH.

3 Authority / Responsibility

Department / Function	Responsibility
DSPS & PAX	Training, Application and Updates of SOP
Quality Assurance	Supervision

4 Equipment & Materials

Blood collection

EDTA BCT e.g.

BD Vacutainer K2E (EDTA)	Ref. 363095
Greiner BioOne Vacuette K2-/K3-EDTA	Ref. 454382
Sarstedt S-Monovette K2-/K3-EDTA	Ref. 02.1066.001
Terumo Venosafe K2-/K3-EDTA	Ref. VT-109SDK
PAXgene Blood ccfDNA Tube (CE-IVD)	Ref. 768165
PAXgene Blood ccfDNA Tube (RUO)	Ref. 768115

Technical SOPs for pre-analytical workflows based on ISO & CEN standards

Provided by courtesy of D. Groelz, PreAnalytiX

Preanalytical Considerations about Circulating Tumor DNA

ISO 20186-3 – Pre-examination Processes for Blood ccfDNA

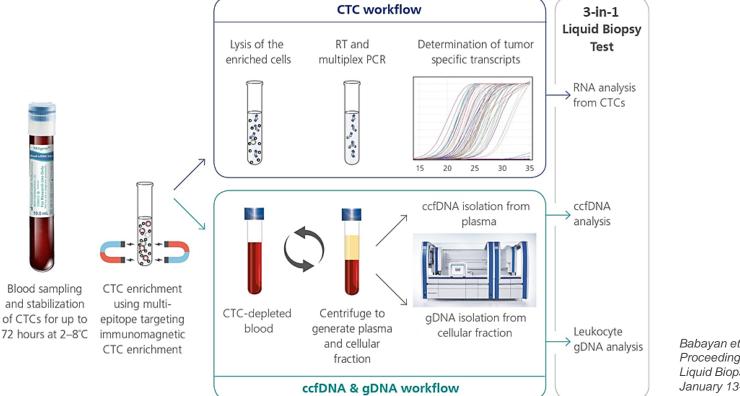
Page

Contents

rore	word			
Intro	oductio	n		
1	Scop	e		
2	Normative references			
3				
4	General consideration			
5	Outside the laboratory			
	5.1	Specimen collection		
		5.1.1 Information about the specimen donor/patient		
		5.1.2 Selection of the venous whole blood collection tube by the laboratory		
		5.1.3 Venous whole blood collection from the donor/patient and stabilization procedures		
		5.1.4 Information about the specimen and storage requirements at the blood collection facility.		
	5.2	Transport requirements		
5	Insid	e the laboratory		
	6.1	Specimen reception		
	6.2	Storage requirements for blood specimens		
	6.3	Plasma preparation		
	6.4	Storage requirements for plasma samples		
	6.5	Isolation of the ccfDNA		
		6.5.1 General		
		6.5.2 Using blood collection tubes with stabilizers		
		6.5.3 Using blood collection tubes without stabilizers		
	6.6	Quantity and quality assessment of isolated ccfDNA		
	6.7	Storage of isolated ccfDNA		
		6.7.1 General		
		6.7.2 ccfDNA isolated with commercially available kits		
		6.7.3 ccfDNA isolated with the laboratory's own protocols		

profiles in venous whole blood plasma 13 Bibliography 16 ISO 20186-3:2019 - Molecular in vitro diagnostic examinations — Specifications for preexamination processes for venous whole blood — Part 3: Isolated circulating cell free DNA from plasma

- Need for pre-analytical workflow standardization to reduce diagnostic errors
- Pre-analytical factors that influence the outcome of ccfDNA analysis
- International initiatives and requirements to standardize pre-analytical workflows
- Liquid biopsy preservation and workflow solutions


Pre-analytical Steps: Part of a Whole Diagnostic Test Workflow

Multimodal Analysis: Extraction and Analysis of CTC RNA, ccfDNA and gDNA from a Single Blood Sample

Babayan et al. [abstract]. Proceedings: AACR Advances in Liquid Biopsies 2020; January 13-16, 2020; Miami, FL.

* For Research Use Only. Not for use in diagnostic procedures.

- Unless otherwise stated, all products mentioned in this presentation are for Research Use Only and not for use in diagnostic procedures.
- **RUO** products shown here are for Research Use Only. Not for use in diagnostic procedures.
- MBA products shown here are for Molecular Biology Applications Only. Not for the diagnosis, prevention or treatment of a disease.
- For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN or PreAnalytiX kit handbook or user manual. QIAGEN or PreAnalytiX kit handbooks and user manuals are available at www.qiagen.com or can be requested from QIAGEN Technical Services or your local distributor.
- A CE-marked PAXgene Blood ccfDNA Tube for in vitro diagnostics is available in certain European countries.
 The performance characteristics of the RUO and the IVD tubes are equivalent.